Cho phương trình mx2 - (2m + 1).x + (m+1)= 0. Tìm m để phương trình có 1 nghiệm lớn hơn 2.
1. Tìm các giá trị của m để phương trình 3x2 - 4a + 2(m-1) = 0 có hai nghiệm phân biệt nhỏ hơn 2
2. Tìm các giá trị của m để phương trình x2 +mx -1 - 0 có ít nhất một nghiệm lớn hơn hoặc bằng 2
3. Cho phương trình mx2 - (2m-1)x +m+2 = 0 (5). Tìm hệ thức liên hệ giữa các nghiệm x1, x2 của (5) không phụ thuộc vào m
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m:
a. mx2 + (2m – 1)x + m + 2 = 0 b. 2x2 - (4m +3)x + 2m2 - 1 = 0
c. x2 – 2(m + 3)x + m2 + 3 = 0 d. (m + 1)x2 + 4mx + 4m +1 = 0
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
Tìm m để phương trình
mx2+(2m-1)x+m-2=0 có 2 nghiệm phân biệt đều âm
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta=\left(2m-1\right)^2-4m\left(m-2\right)>0\\x_1+x_2=\dfrac{1-2m}{m}< 0\\x_1x_2=\dfrac{m-2}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m+1>0\\\dfrac{1-2m}{m}< 0\\\dfrac{m-2}{m}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{4}\\\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{2}\end{matrix}\right.\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{4}< m< 0\\m>2\end{matrix}\right.\)
Giúp mình 2 câu này với ạ:
1. Tìm m để bất phương trình sau có nghiệm đúng với mọi x :
mx2 +(m+1)x+m-1 <0
2. Tìm m để bất phương trình sau vô nghiệm :
mx2-4(m+1)x+m-5<0
1.
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
cho pt: \(x^3-x^2+2mx-2m=0\left(1\right)\)
a, Tìm m để phương trình có ba nghiệm phân biệt x1,x2,x3 tm: x1+x2+x3=10
b,Tìm m để phương trình có ba nghiệm phân biệt đều lớn hơn hoặc bằng 1.
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
cho phương trình (2m-1 )/(x-1)= 2-m (m là tham số) . tìm giá trị vủa m để phương trình có nghiệm lớn hơn -1
Cho phương trình : mx2 - ( 2m - 1)x + (m-2)=0
1) Giải hệ phương trình vời m=3
2) Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1,x2 thỏa mãn x12 +x22=2018
3) Tìm hệ thức liên hệ giữa các nghiệm ko phụ thuộc vào m
1) Bạn tự giải
2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)
Mặt khác: \(x_1^2+x_2^2=2018\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)
\(\Rightarrow4m^2-4m+1-2m+4=2018\)
\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)
c) Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\)
(Không phụ thuộc vào m)
Tìm m để phương trình m x 2 - 2 m + 1 x + m + 1 = 0 vô nghiệm.
A. m < -1
B. m ≤ 1 hoặc m ≥ 0
C. m = 0 và m < -1
D. m = 0 và m > -1
Bài 2: cho phương trình\(x^2-2\left(m+1\right)x+2m+10=0\)
a)Tìm m để phương trình có nghiệm này gấp 3 lần nghiệm kia
b)Tìm m để phương trình có 2 nghiệm thỏa mãn \(P=-x_1^2-x_2^2-10x_1x_2\) có giá trị lớn nhất
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{2}\\x_1=\dfrac{3\left(m+1\right)}{2}\end{matrix}\right.\)
Lại có \(x_1x_2=2m+10\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3\left(m+1\right)}{2}\right)=2m+10\)
\(\Leftrightarrow3m^2+6m+3=8m+40\)
\(\Leftrightarrow3m^2-2m-37=0\Rightarrow m=\dfrac{1\pm4\sqrt{7}}{3}\)
b.
\(P=-\left(x_1+x_2\right)^2-8x_1x_2\)
\(=-4\left(m+1\right)^2-8\left(2m+10\right)\)
\(=-4m^2-24m-84=-4\left(m+3\right)^2-48\le-48\)
\(P_{max}=-48\) khi \(m=-3\)
a) Ta có: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+10\right)\)
\(=\left(2m+2\right)^2-4\left(2m+10\right)\)
\(=4m^2+8m+4-8m-40\)
\(=4m^2-36\)
Để phương trình có nghiệm thì \(4m^2-36\ge0\)
\(\Leftrightarrow4m^2\ge36\)
\(\Leftrightarrow m^2\ge9\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi \(m\ge3\) hoặc \(m\le-3\) thì Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1\cdot x_2=2m+10\\x_1+x_2=2\left(m+1\right)=2m+2\end{matrix}\right.\)
mà \(x_1-3x_2=0\) nên ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2m+2\\x_1=3x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\cdot x_2\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{3m+3}{2}\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\)
Thay \(x_1=\dfrac{3m+3}{2};x_2=\dfrac{m+1}{2}\) vào \(x_1\cdot x_2=2m+10\), ta được:
\(\dfrac{3m+3}{2}\cdot\dfrac{m+1}{2}=2m+10\)
\(\Leftrightarrow\dfrac{3\left(m+1\right)^2}{4}=2m+10\)
\(\Leftrightarrow3\left(m^2+2m+1\right)=8m+40\)
\(\Leftrightarrow3m^2+6m+3-8m-40=0\)
\(\Leftrightarrow3m^2-2m-37=0\)
\(\Delta=\left(-2\right)^2-4\cdot3\cdot\left(-37\right)=4+444=448>0\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2+8\sqrt{7}}{6}=\dfrac{4\sqrt{7}+1}{3}\left(nhận\right)\\m_2=\dfrac{2-8\sqrt{7}}{6}=\dfrac{1-4\sqrt{7}}{3}\left(nhận\right)\end{matrix}\right.\)