Phân tích đa thức thành nhân tử:
x11 + x10 + ....... + x2 + x + 1
Phân tích đa thwusc thành nhân tử bằng phương pháp thêm bớt 1 hạng tử
a) x4 + 5x3 + 10x - 4
b) x3 + y3 + z3 - 3xyz
c)x8 + x+ 1
d) x7 + x2 + 1
e) x10 + x5 + 1
Giups tui mấy ní ơiii
\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)
a: =x^4+2x^2+5x^3+10x-2x^2-4
=(x^2+2)(x^2+5x-2)
b; =(x+y)^3+z^3-3xy(x+y)-3xyz
=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1
=(x^2+x+1)(x^6-x^5+x^3-x^2+1)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Phân tích đa thức thành nhân tử:
(x2+x+1)(x2+x+5)-21
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)+5-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-16\)
\(=\left(x^2+x+8\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+8\right)\left(x+2\right)\left(x-1\right)\)
phân tích đa thức thành nhân tử
a) (x-1)(x2+x+1)
(x - 1)(x2 + x + 1) là nhân tử rồi bn ơi
( x - 1 ) ( x2 + x + 1 )
⇔ \(x^3-1\) ( HĐT )
phân tích đa thức (x2- x+ 1)2 - 5x( x2 -x +1)2 + 4x2 thành nhân tử
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)
Phân tích đa thức thành nhân tử:
3(x-1)-x+x2
\(=3\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+3\right)\)
x3-x2-x+1 → phân tích các đa thức thành nhân tử
\(x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)\)
\(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)\)
\(x^3-x^2-x+1=\left(x^3-x^2\right)-\left(x-1\right)=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)^2\)
Phân tích các đa thức sau thành nhân tử:
a) x3 – 2x2y + xy2
b) x2 + 12x + 20
c) (x2 + x + 1)(x2 + x + 4) + 2
a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)
c) đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)
Phân tích đa thức thành nhân tử:
1) x2 - y2 - 2x + 1
2) x3 - 2x2 - x + 2
3) x2 - 2x2 - x + 2
1: =(x-1-y)(x-1+y)
3: =(x-1)(x+1)(x-2)
phân tích đa thức sau thành nhân tử
a) (x+2)(x2-2x+1)