Tính:
A = 5 . sin2 151π/6 + 3 . cos2 . 85π/3 - 4 tan2 . 193π/6 + 7 cot2 37π/3.
a) Biết sin2=\(\dfrac{9}{15}tính\cos2,\tan2,\cot,biết\cos2=\dfrac{3}{5}tính\sin2,\tan2,\cot2\)
cho tan∂ =2 . tính Cot2 , Sin2, Cos2
\(\cot\alpha=\dfrac{1}{2}\)
\(\sin\alpha=\dfrac{kề}{\sqrt{5}kề}=\dfrac{\sqrt{5}}{5}\)
\(\cos\alpha=\sqrt{1-\dfrac{5}{25}}=\dfrac{2\sqrt{5}}{5}\)
1. cos 2a + cos 2b = - 2 cos(a+b) cos( a-b)
2. cos2a + sin2b = 1
3. cos a2 + sin b2= 1
4. cos2 a + sin2 a = 1
5. cos 2a = cos2 a - 2 sin 2a
6. sin 2a = - 2 sin a. cos a.
7. sin 2a = cos2 a - sin2 a
8. sin 2a - sin 2b= 2 sin ( a+b) cos ( a - b)
9. sin 2a - sin 2b= 2 cos( a+b) sin ( a - b)
10. cos a2 + sin a2 = 1
Câu số mấy đúng?
Cho sin2=0.6
Tính cos2, tan2, cotang2 (2 là anfa)
\(sin^2\alpha+cos^2\alpha=1\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{1-\left(0,6\right)^2}=\frac{4}{5}\)
\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,6}{\frac{4}{5}}=\frac{3}{4}\)
\(cot\alpha=\frac{1}{tan\alpha}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
a) Tính: A=13-23+33-43+53-63+....+20113-20123+20133
b) B=\(\frac{2\cos^2\alpha+5\sin2\alpha+3\tan^2\alpha}{\sqrt{5\tan^22\alpha+6\cot2\alpha}}\)
với sin a=0,654
chứng minh công thức nhân đôi
\(\sin2\alpha=2.\sin\alpha.\cos\alpha\)
\(\cos2\alpha=\cos^2\alpha-\sin^2\alpha\)
\(\tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha}\)
Tính ( kq lấy 4 chữ số thập phân)
\(A=\dfrac{2\cos^2\alpha+5\sin2\alpha+3\tan^2\alpha}{\sqrt{5\tan^22\alpha+6\cot2\alpha}}\)với \(\sin\alpha=0,654\)
Chứng minh các đẳng thức sau:
1/ \(sin^6\alpha+cos^6\alpha=\frac{5}{8}+\frac{3}{8}cos4\alpha\)
2/\(\frac{1+sin2\alpha-cos2\alpha}{1+cos2\alpha}=tan\alpha+tan^2\alpha\)
\(sin^6a+cos^6a=\left(sin^2x\right)^3+\left(cos^2x\right)^3\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)\)
\(=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-\frac{3}{4}.\left(2sinx.cosx\right)^2\)
\(=1-\frac{3}{4}sin^22x=1-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{2}cos4x\right)=\frac{5}{8}+\frac{3}{8}cos4x\)
2/
\(\frac{1+sin2a-cos2a}{1+cos2a}=\frac{1+2sina.cosa-\left(1-2sin^2a\right)}{1+2cos^2a-1}=\frac{2sina.cosa+2sin^2a}{2cos^2a}\)
\(=\frac{2sina.cosa}{2cos^2a}+\frac{2sin^2a}{2cos^2a}=tana+tan^2a\)
Cho tan α + cot α = 3. Tính sin α.cos α và tan2 α + cot2 α