chung minh rang bieu thuc sau khong phu thuoc vao a: (3a+2)(2a-1)+(3-a)(6a+2)-17(a-1)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chung minh gia tri bieu thuc sau khong phu thuoc vao a (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)
chung minh rang cac bieu thuc sau khong phu thuoc vao gia tri cua bien x, biet B= x (x^3 + 2x^2 - 3x +2) - (x^2+ 2x) x^2 +3x ( x-1) +x-12
B=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12
=-12
\(B=x\left(x^3+2x^2-3x+2\right)-\left(x^2+2x\right)x^2+3x\left(x-1\right)+x-12\)
\(=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12\)
\(=\left(x^4-x^4\right)+\left(2x^3-2x^3\right)+\left(-3x^2+3x^2\right)+\left(2x-3x+x\right)-12\)
\(=0+0+0+0-12\)
\(=-12\)
Cho pt x^2-2(m+1)x+2m=0
a. Chung minh rang pt luon co 2 nghiem
b. Goi x1 ; x2 la hai nghiem cua pt . Chung to rung bieu thuc sau day khong phu thuoc vao gia tri cua m
A= x1+x2 - x1x2
Lời giải:
a) Ta thấy:
\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt với mọi $m$
b) Áp dụng định lý Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)
Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$
Ta có đpcm.
chung minh bieu thuc sau khong phu thuoc vao bien x
(2x+3)(4x2-6x+9)-2(4x3-1)
(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
a,125- (x + 1) ^ 2 + x ^ 2 - (- 2x + 3)
b,150-(x-y)(x+y)+x^2-y^2
Chung minh bieu thuc khong phu thuoc vao x,y
`@` `\text {Ans}`
`\downarrow`
`a,`
\(125- (x + 1) ^ 2 + x ^ 2 - (- 2x + 3)\)
`= 125 - x^2 -2x - 1 + x^2 + 2x - 3`
`= (125 - 1 - 3) + (-x^2 + x^2) + (-2x+2x)`
`= 121`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`b,`
\(150-(x-y)(x+y)+x^2-y^2\)
`= 150 - [ x(x+y) - y(x+y)] + x^2 - y^2`
`= 150 - (x^2 + xy - xy - y^2) + x^2 - y^2`
`= 150 - (x^2 - y^2) + x^2 - y^2`
`= 150 - x^2 + y^2 + x^2 - y^2`
`= 150`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
\(a,125-\left(x+1\right)^2+x^2-\left(-2x+3\right)\\ =125-x^2-2x-1+x^2+2x-3\)
\(=\left(-x^2+x^2\right)+\left(-2x+2x\right)+\left(125-1-3\right)\\ =121\)
\(b,150-\left(x-y\right)\left(x+y\right)+x^2-y^2\\ =150-\left(x^2-y^2\right)+x^2-y^2\\ =150-x^2+y^2+x^2-y^2\\ =150+\left(-x^2+x^2\right)+\left(-y^2+y^2\right)\\ =150\)
`a,...=125-x^2-2x-1+x^2+2x-3=121`
`->` Biểu thức không phụ thuộc vào `x`
`b,...=150-x^2+y^2+x^2-y^2=150`
`->` Biểu thức không phụ thuộc vào `x;y`
A=a^2+2a^2-1/a^2+2a+2a^2+1
a, rut gon bieu thuc
b, chung to rang voi a thuoc Z thi A khong toi gian
chung gia tri cua bieu thuc sau khong phu thuoc vao bien
a, (x+2)^2-2(x+2)(x-8)+(x-8)^2
\(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=\left(x+2\right)^2-\left(2x+4\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=\left(x+2\right)^2-2x^2+16x-4x+32+\left(x-8\right)^2\)
\(=x^2+4x+4-2x^2+16x-4x+32+x^2-16x+64\)
\(=\left(x^2+x^2-2x^2\right)+\left(4x-4x\right)+\left(16x-16x\right)+4+32+64\)
\(=4+32+64=100\)
Ta có điều phải chứng minh
a) (x+2)2 -2(x+2)(x-8)+(x-8)2
=[ (x+2)-(x-8)]2
=(x+2-x+8)2
=102
= 100
VẬY GT CỦA BT KO PHỤ THUỘC VÀO BIẾN
chung minh bieu thuc sau khong phu thuoc vao x,y : 6ax-9y-6x+9ax/20ax+30ay+45y+30x
chung minh cac bieu thuc sau khong phu thuoc vao bien
(x+y-z-t)2 - (z+t-x-y)
( x + y - z - t )2 - ( z + t - x - y )2
= [( x + y - z - t ) + ( z + t - x - y )] . [( x + y - z - t ) - ( z + t - x - y )]
= 0 . [( x + y - z - t ) - ( z + t - x - y )]
= 0
=> Biểu thức trên không phụ thuộc vào biến