Giúp mình bài 3,4,5 ạ
giải giúp mình bài 3,4,5 vs ạ, có tóm tắt nha
MN ƠI GIÚP MÌNH BÀI 3,4,5 PHẦN TOÁN ĐC KO Ạ!! MÌNH ĐANG CẦN GẤP Á!! HIC. AI TRẢ LỜI NHANH NHẤT THÌ MÌNH TICK VÀ KB CHO Ạ
Bài 1:
a.
$545,26+117,3=662,56$
b.
$400,56-184,48=216,08$
c.
$4,21\times 3,2=13,472$
d.
$28,5:2,5=11,4$
Bài 2:
a. 2km 21 m = 2,021 km
b. 1020 kg = 1 tấn 20 kg
c. 22 dam2 10 m2 = 2210 m2
d. 90 giây = 1,5 phút
Bài 3:
a. Chiều rộng mảnh vườn:
$80:(3+2)\times 2=32$ (m)
Chiều rài mảnh vườn:
$80-32=48$ (m)
Diện tích mảnh vườn:
$32\times 48=1536$ (m2)
b.
Diện tích lối đi chiếm số % diện tích mảnh vườn là:
$100-80=20$ (%)
Diện tích lối đi là:
$1536\times 20:100=307,2$ (m2)
Giúp mình câu 3,4,5 với ạ mong mn người giúp đỡ mik ạ
Bài 5:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\)
Do đó: a=30; b=40; c=50
Giúp em bài 3,4,5.Gấp ạ
Câu 4 số mol h2so4 dùng để trung hòa 500g là n=1.0,02.10=0,2mol
2M+2H2O->2MOH+H2
a a
M2O+H2O->2MOH
b 2b
2MOH+H2SO4-> M2SO4+2H2O
n(MOH)=2n(H2SO4)=0,2.2=0,4mol
Ta có hệ a+2b=0,4
aM+b(2M+16)=10,8
<=> (a+2b)M +16b=10,8
0,4M+16b=10,8
<=>M+40b=27
Ta có M<27 và b<0,2
=> M chỉ có thể là Na(M=23)
b=0,1 ; a=0,2
Lần sau em đăng tách ra 1-2 bài cho 1 câu hỏi nha
GIÚP EM BÀI 3,4,5 VỚI Ạ..
GIÚP EM BÀI 3,4,5 VỚI Ạ
Bài 4:
2: Xét ΔBAK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=BA^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)
Giúp em bài 3,4,5 với ạ
Bài 5:
\(\cos\alpha=\sqrt{1-\dfrac{1}{25}}=\dfrac{2\sqrt{6}}{5}\)
\(\tan\alpha=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{\sqrt{6}}{12}\)
\(\cot\alpha=2\sqrt{6}\)
GIÚP EM BÀI 3,4,5 VỚI Ạ
Bài 5:
\(\cos\alpha=\sqrt{1-\dfrac{1}{25}}=\dfrac{2\sqrt{6}}{5}\)
\(\tan\alpha=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{24}\)
\(\cot\alpha=1:\dfrac{\sqrt{6}}{24}=4\sqrt{6}\)
GIÚP EM BÀI 3,4,5 Ạ.GẤP Ạ..
\(5,\\ K=\sqrt{5x-9+6\sqrt{5x-9}+9}+\sqrt{5x-9-6\sqrt{5x-9}+9}\\ K=\sqrt{\left(\sqrt{5x-9}+3\right)^2}+\sqrt{\left(\sqrt{5x-9}-3\right)^2}\\ K=\sqrt{5x-9}+3+\sqrt{5x-9}-3=2\sqrt{5x-9}\ge0,\forall x\\ K_{min}=0\Leftrightarrow\sqrt{5x-9}=0\Leftrightarrow x=\dfrac{9}{5}\)
\(3,\\ 1,A=\dfrac{1,44+7}{\sqrt{1,44}}=\dfrac{7,44}{1,2}=\dfrac{31}{5}\\ 2,B=\dfrac{x-3\sqrt{x}+\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ B=\dfrac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ B=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(3,S=\dfrac{1}{B}+A=\dfrac{\sqrt{x}+3}{\sqrt{x}}+\dfrac{x+7}{\sqrt{x}}=\dfrac{x+\sqrt{x}+10}{\sqrt{x}}\\ S=\sqrt{x}+1+\dfrac{10}{\sqrt{x}}\ge2\sqrt{\sqrt{x}\cdot\dfrac{10}{\sqrt{x}}}+1=2\sqrt{10}+1\left(BĐT.cosi\right)\)
Dấu \("="\Leftrightarrow x=10\)
\(1,HC=BC-HB=6\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=16\\AC^2=CH\cdot BC=48\\AH^2=BH\cdot HC=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=4\sqrt{3}\left(cm\right)\\AH=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
\(2,\widehat{ADB}=\widehat{AHB}\left(=90^0\right)\) nên \(ADHB\) nội tiếp
\(\Rightarrow\widehat{HDB}=\widehat{HAB}\left(cùng.chắn.HB\right)\)
Mà \(\widehat{HAB}=\widehat{ACB}\left(cùng.phụ.\widehat{HAC}\right)\)
\(\Rightarrow\widehat{HDB}=\widehat{ACB}\)
\(\left\{{}\begin{matrix}\widehat{HDB}=\widehat{ACB}\left(cm.trên\right)\\\widehat{KBC}.chung\end{matrix}\right.\Rightarrow\Delta BHD\sim\Delta BKC\left(g.g\right)\\ \Rightarrow\dfrac{BD}{BC}=\dfrac{BH}{BK}\Rightarrow BD\cdot BK=BH\cdot BC\)
\(c,\) Áp dụng công thức tính diện tích hình tam giác bằng
giúp em bài 3,4,5 với ạ
Bài 4:
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB đồng dạng với ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF đồng dạng với ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\)
b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH đồng dạng với ΔBEC
=>\(\dfrac{BD}{BE}=\dfrac{BH}{BC}\)
=>\(BD\cdot BC=BH\cdot BE\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH đồng dạng với ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CF\cdot CH=CD\cdot CB\)
\(BH\cdot BE+CF\cdot CH\)
\(=BD\cdot BC+CD\cdot BC\)
\(=BC\cdot\left(BD+CD\right)=BC^2\)
c: Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=180^0\)
=>BFHD là tứ giác nội tiếp
=>\(\widehat{FBH}=\widehat{FDH}\)
=>\(\widehat{FDH}=\widehat{ABE}\)
Xét tứ giác CEHD có
\(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
=>CEHD là tứ giác nội tiếp
=>\(\widehat{HDE}=\widehat{HCE}\)
=>\(\widehat{HDE}=\widehat{ACF}\)
\(\widehat{FDH}=\widehat{ABE}\)
\(\widehat{HDE}=\widehat{ACF}\)
\(\widehat{ABE}=\widehat{ACF}\left(=90^0-\widehat{BAC}\right)\)
Do đó: \(\widehat{FDH}=\widehat{EDH}\)
=>DH là phân giác của góc FDE
Xét tứ giác AFHE có
\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
=>AFHE là tứ giác nội tiếp
=>\(\widehat{HFE}=\widehat{HAE}=\widehat{DAC}\)
BFHD là tứ giác nội tiếp
=>\(\widehat{HFD}=\widehat{HBD}=\widehat{EBC}\)
\(\widehat{HFE}=\widehat{DAC}\)
\(\widehat{HFD}=\widehat{EBC}\)
\(\widehat{DAC}=\widehat{EBC}\left(=90^0-\widehat{ACB}\right)\)
Do đó: \(\widehat{HFE}=\widehat{HFD}\)
=>FH là phân giác của góc EFD
Xét ΔEFD có
FH,DH là các đường phân giác
FH cắt DH tại H
Do đó: H là tâm đường tròn nội tiếp ΔEDF