Chi n ∈ N Chứng minh rằng n2 + n + 1 Không chia hết cho 4 và 5
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Cho n thuộc N. Chứng minh rằng n2+n+1 không chia hết cho 2 và không chia hết cho 9
Cho n thuộc N , chứng minh rằng 5n - 1 chia hết cho 4
Cho n thuộc N , chứng minh rằng n2 + n + 1 không chia hết cho 4 và không chia hết cho 5
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
chứng minh rằng: n không chia hết cho 4 khi và chỉ khi 1n+2n+3n+4n chia hết cho 5. giải chi tiết dùm mình tks nhiều ạ
Chứng minh rằng: A=n2+n+1 ko chia hết cho 2 và 5,∀ n∈N
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
a) n2+n+1=n(n+1)+1
Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2
- n2+n+1=n(n+1)+1
Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5
tham khao
https://olm.vn/hoi-dap/detail/93364253.html
a) Cho A = 119 + 118 + 117 +…+11 + 1. Chứng minh rằng A ⋮ 5
b) Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 4.
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
a) chịu
b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)
Chứng minh rằng: A = n 2 + n + 1 không chia hết cho 2, với ∀ n ∈ N
Cho n thuộc N, chứng minh rằng n^2 + n + 1 không chia hết cho 4 và không chia hết cho 5.
\(n^2+n+1=n^2+n+1=n\left(n+1\right)+1\text{ mà }n\left(n+1\right)⋮2\)
nên n(n+1)+1 lẻ nên ko chia hết cho 4
\(\text{Ta chứng minh: }n^2+n\text{ ko chia 5 dư 4};n\text{ chia 5 dư 0 thì đúng ; 1 cx đúng;...}\)
nên n^2+n+1 ko chia 5 dư 4+1=5 hay 0 nên
có đpcm
Cho n thuốc N. Chứng minh rằng n^2 + n + 1 không chia hết cho 4 và không chia hết cho 5
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên \(⋮\)2 \(\Rightarrow\)n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
Giả sử n chia hết cho 5
=> n có dạng 5k
=> n2 + n + 1 = 25k2 + 5k + 1 = 5k( 5k + 1 ) + 1
Ta có : 5k( 5k + 1 ) chia hết cho 5 mà 1 không chia hết cho 5
=> 25k2 + 5k + 1 không chia hết cho 5 ( đpcm )
ta có : n^2+n=n(n+1) là k của 2 số tự nhiên liên tiếp nên có tận cùng là 0,2,6
do n^2+n+1 có tận cùng là 1, 3 , 7
=> chữ số cuối cùng là số lẻ => n^2+n+1 ko chia hết cho 4 và 5