Tìm số tự nhiên n để 4n+3 và 2n+3 là số nguyên tố cùng nhau.
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau
Giả sử \(7n+13\) và \(2n+4\) cùng chia hết cho số nguyên tố d
Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)
Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)
Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\) và \(2n+4\) là hai số nguyên tố cùng nhau
Đặt (7n + 13; 2n + 4) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)
\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d
\(\Rightarrow\) 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)
mà 7n + 13 \(⋮̸\)2
\(\Rightarrow\) d = 1
Vậy (7n + 13; 2n + 4) = 1
Tìm số tự nhiên n để các só 9n + 24 và 3n + 4 là các số nguyên tố cùng nhau
Tìm số tự nhiên n , sao cho 9n + 24 và n + 3 là số nguyên tố cùng nhau .
Cho a và b là hai số tự nhiên không nguyên tố cùng nhau. Tìm ƯCLN ( a;b ):
a, a = n+1 ; b = n+6
b, a = 2n + 1; b = n+4
c, a = 4n + 3; b = 5n+1
Cho a và b là hai số tự nhiên không nguyên tố cùng nhau. Tìm ƯCLN ( a;b ):
a, a = n+1 ; b = n+6
b, a = 2n + 1; b = n+4
c, a = 4n + 3; b = 5n+1
a,
Gọi UCLN của a, b là d
Ta có:
a chia hết cho d => n+1 chia hết cho d
b chia hết cho d=> n + 6 chia hết cho d
=> n + 6 - (n+1) chia hết cho d
=>5 chia hết cho d
Mà d lớn nhất
=> d = 5
Vậy UCLN của a, b = 5
b,
Gọi UCLN của a, b là d
Ta có:
a chia hết cho d =>2n+1 chia hết cho d
b chia hết cho d=> n + 4 chia hết cho d => 2(n+4) chia hết cho d=>2n+8 chia hết cho d
=>2n + 8 - (2n+1)chia hết cho d
=7 chia hết cho d
Mà d lớn nhất
=> d = 7
Vậy UCLN của a, b = 7
c,
Gọi UCLN của a, b là d
Ta có:
a chia hết cho d =>4n+3 chia hết cho d=>5(4n+3) chia hết cho d=>20n + 15 chia hết cho d
b chia hết cho d=>5n + 1 chia hết cho d=>4(5n+1) chia hết cho d=>20n+4 chia hết cho d
=>20 + 15 - (20n+4) chia hết cho d
=>11 chia hết cho d
Mà d lớn nhất
=> d = 11
Vậy UCLN của a, b = 11
Chứng minh rằng có vô số số tự nhiên n để n + 15 và n + 72 là hai số nguyên tố cùng nhau
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.