Những câu hỏi liên quan
NH
Xem chi tiết
PL
24 tháng 7 2016 lúc 16:08

Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau

Toán lớp 6 Ước chung

Bình luận (0)
HP
23 tháng 11 2016 lúc 16:42

Gọi d e ƯC ( 2n+3;4n+1)

suy ra:

(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d

                                  suy ra 8n+3 chia hết cho d

suy ra

(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d

                                  suy ra: 8n+1 chia hết cho d

suy ra : (8n+3)-(8n+1) chia hết cho d

suy ra: 2 chia hết cho d

suy ra : d thuộc Ư(2)

suy ra : d thuộc {1,2}

vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ

suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1

vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
ND
10 tháng 11 2016 lúc 20:47

Giả sử \(7n+13\)\(2n+4\) cùng chia hết cho số nguyên tố d

Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)

Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)

Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\)\(2n+4\) là hai số nguyên tố cùng nhau

 
Bình luận (0)
TA
9 tháng 3 2017 lúc 20:50

Đặt (7n + 13; 2n + 4) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)

\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d

\(\Rightarrow\) 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)

mà 7n + 13 \(⋮̸\)2

\(\Rightarrow\) d = 1

Vậy (7n + 13; 2n + 4) = 1

Bình luận (0)
NT
Xem chi tiết
NN
30 tháng 11 2016 lúc 12:34

n=3

Bình luận (0)
NK
15 tháng 3 2020 lúc 21:13

n=3

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
PA
11 tháng 11 2016 lúc 20:54

a,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d => n+1 chia hết cho d

b chia hết cho d=> n + 6 chia hết cho d

=> n + 6 - (n+1) chia hết cho d

=>5 chia hết cho d

Mà d lớn nhất

=> d = 5

Vậy UCLN của a, b = 5

b,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>2n+1 chia hết cho d

b chia hết cho d=> n + 4 chia hết cho d => 2(n+4) chia hết cho d=>2n+8 chia hết cho d

=>2n + 8 - (2n+1)chia hết cho d

=7 chia hết cho d

Mà d lớn nhất

=> d = 7

Vậy UCLN của a, b = 7

c,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>4n+3 chia hết cho d=>5(4n+3) chia hết cho d=>20n + 15 chia hết cho d

b chia hết cho d=>5n + 1 chia hết cho d=>4(5n+1) chia hết cho d=>20n+4 chia hết cho d

=>20 + 15 - (20n+4) chia hết cho d

=>11 chia hết cho d

Mà d lớn nhất

=> d = 11

Vậy UCLN của a, b = 11

Bình luận (0)
TT
Xem chi tiết
VM
Xem chi tiết