tìm GTNN ( Áp dụng BĐT cơ bản hoặc BĐT cổ điển )
\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\) biết x>0 ; y>0 và x+y ≥6
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
Cho \(x;y;z\ge-\frac{1}{2}\)thỏa mãn \(x^2+y^2+z^2=3\). Tìm GTNN của: \(A=x^3+y^3+z^3\)
Hóng lời giải cực ngắn, đẹp, không sử dụng BĐT Bunyakovski, Cauchy-Schwarz dạng Engel hoặc bất kì BĐT cổ điển nào;))
CM cái này là xong \(x^3\ge\frac{3}{2}x^2-\frac{1}{2}\)
\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)\left(x-1\right)^2\ge0\) đúng
Phùng Minh Quân ukm, ý tưởng ra đề của em cũng là từ cái bđt hiển nhiên: \(\left(x-1\right)^2\left(x+\frac{1}{2}\right)\ge0\)
Đặt [LATEX]A= \dfrac{2}{a^2+b^2}+ \dfrac{35}{ab}+2ab[/LATEX].
Áp dụng BĐT dạng [LATEX]\frac 1x+ \frac 1y \ge \frac{4}{x+y} \; \; x,y>0[/LATEX] ta có
[LATEX]\dfrac{4}{2(a^2+b^2)}+ \dfrac{4}{4ab} \ge \dfrac{4^2}{2(a+b)^2} \ge \frac 12 \qquad (1)[/LATEX].
Áp dụng BĐT AM-GM ta có
[LATEX]2ab+ \dfrac{32}{ab} \ge 16 \qquad (2)[/LATEX].
Cuối cùng
[LATEX]\dfrac{2}{ab} \ge \frac 12 \qquad (3)[/LATEX].
Cộng [LATEX](1)+(2)+(3)[/LATEX] ta thu được [LATEX]A \ge 17[/LATEX].
Dấu đẳng thức xảy ra khi và chỉ khi [LATEX]a=b=2[/LATEX].
áp dụng BĐT cô-si để tìm GTNN của
\(y=\frac{x^3+1}{x^2};x>0\)
Cho x >0; y>0; x + y > 6 Tìm GTNN của P = 5x + 3y + \(\dfrac{12}{x}+\dfrac{16}{y}\)
Cho x > 0 , y > 0 và x + y \(^{\ge}\) 6
Tìm GTNN của P = 5x + 3y + \(\dfrac{12}{x}\) + \(\dfrac{16}{y}\)
\(P=5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
\(P=3x+\dfrac{12}{x+y}+\dfrac{16}{y}+2.\left(x+y\right)\)
Áp dụng BĐT Cauchy ta có:
\(3x+\dfrac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\)
\(y+\dfrac{16}{y}\ge8\)
Lại có: \(2\left(x+y\right)\ge2.6=12\)
\(\Rightarrow P\ge12+8+12=32\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)
\(\Rightarrow x=2;y=4\)
Vậy \(P_{Min}=32\Leftrightarrow\left[{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)
AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)
2) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)(với x, y khác 0)
Cho \(x,y,z>0.\) CM : \(\dfrac{x}{y+2z}+\dfrac{y}{z+2x}+\dfrac{z}{x+2y}\)
Sử dụng BĐT Bunhicopski nha mọi người :D
Cho x>0, y>0 và x+y \(\ge\)6
Tìm giá trị lớn nhất của biểu thức:
\(P=5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`
tìm GTNN của A= 5x+\(\dfrac{13}{9}\)y+\(\dfrac{3}{x}\) +\(\dfrac{4}{y}\)
với x,y>0 và 2x+y > hoặc =5
Áp dụng BĐT cosi:
\(A=\left(3x+\dfrac{3}{x}\right)+\left(\dfrac{4}{9}y+\dfrac{4}{y}\right)+\left(2x+y\right)\\ A\ge2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{9y}}+5\\ A\ge2\cdot3+2\cdot\dfrac{4}{3}+5=\dfrac{41}{3}\)
Vậy \(A_{min}=\dfrac{41}{3}\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{3}{x}\\\dfrac{4y}{9}=\dfrac{4}{y}\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)