Những câu hỏi liên quan
VC
Xem chi tiết
OO
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
NC
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Bình luận (0)
N3
Xem chi tiết
DN
Xem chi tiết
H24
28 tháng 7 2019 lúc 16:56

Tham khảo nhé :

Cho a b  0 và 3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c  0 và abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) = 8,Q = a^2 + b^2 + c^2,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

Bình luận (9)
HM
Xem chi tiết
NL
11 tháng 6 2019 lúc 23:42

\(x^2+x^2+y^2+\frac{1}{x^2}\ge4\sqrt[4]{x^2y^2}\)

\(\Rightarrow4\sqrt[4]{x^2y^2}\le4\Rightarrow\sqrt[4]{x^2y^2}\le1\Rightarrow x^2y^2\le1\)

\(\Rightarrow-1\le xy\le1\)

\(P_{max}=1\) khi \(\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)

\(P_{min}=-1\) khi \(\left(x;y\right)=\left(1;-1\right);\left(-1;1\right)\)

Bình luận (0)
NH
Xem chi tiết
HN
Xem chi tiết
NL
21 tháng 4 2023 lúc 20:57

Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)

Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được

Bình luận (1)
NL
21 tháng 4 2023 lúc 22:15

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)

\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)

\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)

\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)

\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)

\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)

Bình luận (1)
NY
Xem chi tiết
LD
4 tháng 5 2019 lúc 11:51

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

Bình luận (0)
LD
4 tháng 5 2019 lúc 12:03

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

Bình luận (0)
LD
4 tháng 5 2019 lúc 12:20

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(\Leftrightarrow\left(x+y\right)^2+2\cdot\left(x+y\right)\cdot\frac{7}{2}+\frac{49}{4}-\frac{9}{4}=-y^2\)

\(\Leftrightarrow\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}=-y^2\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)=-y^2\le0\)

\(x+y+2< x+y+5\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+2\le0\\x+y+5\ge0\end{matrix}\right.\Leftrightarrow-5\le x+y\le-2\)

\(\Leftrightarrow-4\le x+y+1\le-1\)

Vậy: \(Min=-4\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.;Max=-1\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

Bình luận (0)
DA
Xem chi tiết
TL
Xem chi tiết
OP
27 tháng 7 2018 lúc 8:26

Ukm

It's very hard

l can't do it 

Sorry!

 
Bình luận (0)