Những câu hỏi liên quan
LL
Xem chi tiết
GP
25 tháng 4 2021 lúc 17:05

phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.

a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.

b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d

Chúc bạn học tốt !!!

Bình luận (0)
PD
25 tháng 4 2021 lúc 17:10

a/ Gọi d là ƯCLN của n+7; n+6

\(\to \begin{cases}n+7\vdots d\\n+6\vdots d\end{cases}\\\to n+7-(n+6)\vdots d\\\to 1\vdots d\\\to d=1\)

\(\to\) Phân số trên tối giản

b/ Gọi d là ƯCLN của 3n+2 và n+1

\(\to\begin{cases}3n+2\vdots d\\n+1\vdots d\end{cases}\\\to \begin{cases}3n+2\vdots d\\3n+3\vdots d\end{cases}\\\to 3n+3-(3n+2)\vdots d\\\to 1\vdots d\\\to d=1\)

\(\to\) Phân số trên tối giản

Bình luận (0)

Giải:

a) Gọi ƯCLN(n+7;n+6)=d

⇒ n+7 ⋮ d           

    n+6 ⋮ d     

⇒(n+7)-(n+6) ⋮ d

⇒   1 ⋮ d     

Vậy n+7/n+6 là phân số tối giản.

b) Gọi ƯCLN(3n+2;n+1)=d

⇒ 3n+2 ⋮ d               ⇒ 3n+2 ⋮ d                  ⇒3n+2 ⋮ d

     n+1 ⋮ d                    3.(n+1) ⋮ d                  3n+3 ⋮ d

⇒(3n+3)-(3n+2) ⋮ d

⇒ 1⋮ d

Vậy 3n+2/n+1 là phân số tối giản.

Chúc bạn học tốt!

Bình luận (0)
HG
Xem chi tiết
H24
9 tháng 3 2017 lúc 6:03

e gio biet lam chua ha cu

ki ten 

thuc

dinh trong thuc

Bình luận (1)
LH
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
XO
6 tháng 5 2021 lúc 23:01

Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))

=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

Bình luận (0)
 Khách vãng lai đã xóa
SN
Xem chi tiết
NL
22 tháng 3 2021 lúc 21:17

đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z

suy ra (2n+3)chia hết cho (kí hiệu) d

           (3n+4)chia hết cho d

suy ra 3.(2n + 3)chia hết cho d

           2.(3n +4)chia hết cho d

suy ra 3.2n+3.3chia hết cho d

           2.3n+2.4chia hết cho d

suy ra 6n+9 chia hết cho d

          6n +8 chia hết cho d

suy ra (6n+9)-(6n+8)chia hết cho d

suy ra 1chia hết cho d

 suy ra d =1

vậy 2n+3/3n+4

Bình luận (0)
 Khách vãng lai đã xóa
SN
22 tháng 3 2021 lúc 20:43

chu mi la , mai mik ik hok ùi ,chu mi la

Bình luận (0)
 Khách vãng lai đã xóa
SN
23 tháng 3 2021 lúc 17:45

cảm ơn bạn Nguyễn Đăng Luyện nhìu nha!

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
H24
6 tháng 1 2022 lúc 14:41

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

Bình luận (1)
AH
Xem chi tiết
NL
6 tháng 8 2021 lúc 17:13

Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên

Bình luận (0)
NT
Xem chi tiết
SM
8 tháng 6 2021 lúc 11:35

bn tham khảo bài của bn này nhé: Câu hỏi của donhatha - Toán lớp 6 - Học trực tuyến OLM

Bình luận (0)
 Khách vãng lai đã xóa
DH
8 tháng 6 2021 lúc 11:35

Đặt \(d=\left(2n+5,3n+7\right)\).

Suy ra 

\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow3\left(2n+5\right)-2\left(3n+7\right)=1⋮d\Leftrightarrow d=1\).

Vậy ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
LL
8 tháng 6 2021 lúc 15:46

Gọi d= ƯCLN \((2n+5;3n+7)\)

        =ƯCLN\([3\left(2n+5\right);2\left(3n+7\right)\)

        =ƯCLN\(\left(6n+15;6n+14\right)\)

        =ƯCLN\([(6n+15)-\left(6n+14\right);\left(6n+14\right)]\)

        =ƯCLN\(\left(1;6n+14\right)=1\)

Vậy \(\frac{2n+5}{3n+7}\)là phân số thối giản

Nếu thấy đúng thì cho mk đúng nha!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
1 tháng 3 2023 lúc 17:32

a.

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

Do \(2n+3\) luôn lẻ nên d phải là số lẻ

Ta có \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)  \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Mà d luôn lẻ \(\Rightarrow d=1\)

Vậy 2n+3 bà 4n+8 nguyên tố cùng nhau hay \(\dfrac{2n+3}{4n+8}\) tối giản

b. Tương tự gọi \(d=ƯC\left(3n+2;5n+3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\) \(\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow3n+2\) và 5n+3 nguyên tố cùng nhau hay \(\dfrac{3n+2}{5n+3}\) tối giản

Bình luận (0)