a.
Gọi \(d=ƯC\left(2n+3;4n+8\right)\)
Do \(2n+3\) luôn lẻ nên d phải là số lẻ
Ta có \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Mà d luôn lẻ \(\Rightarrow d=1\)
Vậy 2n+3 bà 4n+8 nguyên tố cùng nhau hay \(\dfrac{2n+3}{4n+8}\) tối giản
b. Tương tự gọi \(d=ƯC\left(3n+2;5n+3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\) \(\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow3n+2\) và 5n+3 nguyên tố cùng nhau hay \(\dfrac{3n+2}{5n+3}\) tối giản