Những câu hỏi liên quan
HT
Xem chi tiết
BL
Xem chi tiết
TL
22 tháng 12 2016 lúc 20:16

A B O C P 1 2 1 2

a) Vì OP//AC(gt)

=> \(\widehat{O_2}=\widehat{C_1}\) (cặp góc soletrong) (1)

\(\widehat{A_2}=\widehat{O_1}\) (cặp góc đồng vị) (2)

Xét ΔOAC có: OA=OC(gt)

=> ΔOAC cân tại O

=> \(\widehat{A_2}=\widehat{C_1}\) (3)

Từ (1);(2);(3) suy ra:

\(\widehat{O_1}=\widehat{O_2}\)

Xét ΔOBP và ΔOCP có:

OP: cạnh chung

\(\widehat{O_1}=\widehat{O_2}\left(cmt\right)\)

OB=OC(gt)

=> ΔOBP=ΔOCP(c.g.c)

b) Vì: ΔOBP=ΔOCP(cmt)

=> \(\widehat{OBP}=\widehat{OCP}\)

Mà: \(\widehat{OCP}=90^o\left(gt\right)\)

=> \(\widehat{OBP}=90^o\)

=>PB là tiếp tuyến của (O)

Bình luận (0)
TH
Xem chi tiết
KS
9 tháng 10 2019 lúc 21:36

A C P B O 1 2 2 1

a ) Vì OP // AC (gt)

\(\Rightarrow\widehat{O_2}=\widehat{C_1}\) ( cặp góc so le trong ) (1)

\(\widehat{A}_2=\widehat{O}_1\) ( cặp goc đồng vị ) (2)

Xét \(\Delta OAC\) có : OA = OC (gt)

\(\Rightarrow\Delta OAC\) cân tại O

\(\Rightarrow\widehat{A}_2=\widehat{C}_1\) (3)

Từ (1) ; (2) ; (3) suy ra :
\(\widehat{O}_1=\widehat{O}_2\)

Xét \(\Delta OBP\) và \(\Delta OCP\) có :

OP : cạnh chung

\(\widehat{O}_1=\widehat{O}_2\left(cmt\right)\)

OB = OC (gt)

\(\Rightarrow\Delta OBP=\Delta OCP\left(cmt\right)\)

\(\Rightarrow\widehat{OBP}=\widehat{OCP}\) 

Mà : \(\widehat{OCP}=90^o\) ( gt)

\(\Rightarrow\widehat{OBP}=90^o\)

\(\Rightarrow\) PB là tiếp tuyến của đt (O)

Chúc bạn học tốt !!!

Bình luận (0)
PT
Xem chi tiết
H24
9 tháng 2 2023 lúc 15:12

\(A;D \in (O)=>OA=OD=>\triangle OAD\) cân tại \(O=>\widehat{A}=\widehat{ADO}\)

Xét `(O)` có: \(\widehat{A}=\widehat{CDB}\)     `(1)`

Xét \(\triangle DOC\) vuông tại `D` có: \(\widehat{BCD}+\hat{DOB}=90^{o}\)    `(2)`

Xét \(\triangle ADO\) có: \(\widehat{DOB}=\widehat{A}+\hat{ADO}=2\widehat{A}\) `(3)`

Từ \((1);(2);(3)=>\wide{BCD}+2\widehat{CDB}=90^{o}\)

Bình luận (0)
HH
Xem chi tiết
HB
24 tháng 2 2021 lúc 15:47

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA 

Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

Bình luận (0)
DA
Xem chi tiết
ND
Xem chi tiết
KC
Xem chi tiết
NT
13 tháng 6 2023 lúc 14:04

BD//CE

Ax là tiếp tuyến

=>Ax//BD//CE

=>Tâm đường tròn ngoại tiếp ΔOIO' nằm trên Ax

=>BC là tiếp tuyến của đường tròn ngoại tiếp ΔOIO'

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết