BL

Cho điểm C trên đt (O), đkính AB. từ O vẽ đt // với AC và cắt tiếp tuyến tại C của đt (O) ở P

1.CMR : Tam giác OBP = Tam giác OCP

2. CMR PB là Tiếp tuyến của đt (O)

TL
22 tháng 12 2016 lúc 20:16

A B O C P 1 2 1 2

a) Vì OP//AC(gt)

=> \(\widehat{O_2}=\widehat{C_1}\) (cặp góc soletrong) (1)

\(\widehat{A_2}=\widehat{O_1}\) (cặp góc đồng vị) (2)

Xét ΔOAC có: OA=OC(gt)

=> ΔOAC cân tại O

=> \(\widehat{A_2}=\widehat{C_1}\) (3)

Từ (1);(2);(3) suy ra:

\(\widehat{O_1}=\widehat{O_2}\)

Xét ΔOBP và ΔOCP có:

OP: cạnh chung

\(\widehat{O_1}=\widehat{O_2}\left(cmt\right)\)

OB=OC(gt)

=> ΔOBP=ΔOCP(c.g.c)

b) Vì: ΔOBP=ΔOCP(cmt)

=> \(\widehat{OBP}=\widehat{OCP}\)

Mà: \(\widehat{OCP}=90^o\left(gt\right)\)

=> \(\widehat{OBP}=90^o\)

=>PB là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
TP
Xem chi tiết
TV
Xem chi tiết
NP
Xem chi tiết
AL
Xem chi tiết
WR
Xem chi tiết
CT
Xem chi tiết