\(\text{Tìm x:}\)
\(\sqrt{2x+1}=\sqrt{5}\)
\(\sqrt{4\left(x^2-2x-1\right)}=8\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)
a, \(\sqrt{\left(2x+3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x+3\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
Vậy phương trình vô nghiệm.
TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
b,
a, \(\sqrt{\left(2x-1\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-1\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)
TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)
giải hpt:1)\(\begin{cases}\text{x+y+xy(2x+y)=5xy }\\\text{x+y+xy(3x-y)=4xy}\end{cases}\)
2)\(\begin{cases}\left(2x+y+1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{cases}\)
3)\(\begin{cases}\sqrt{9x+\frac{y}{x}}+2.\sqrt{y+\frac{2x}{y}}=4\\\left(\frac{2x}{y^2}-1\right)\left(\frac{y}{x^2}-9\right)=18\end{cases}\)
1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)
\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)
mk ra câu 1 r b lm giúp mk câu 2,3 đc k
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Nhìn không đủ chán rồi không dám động vào
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)
2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)
3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)
5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)
6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)
7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)
8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
9. \(x^2+6x+8=3\sqrt{x+2}\)
10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)
11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)
12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)
13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)
15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)
16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)
17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)
18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)
19. \(x^4+x^2-20=0\)
20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)
21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)
22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)
23. \(x^2+6x+5=\sqrt{x+7}\)
24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)
25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)
26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)
29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
Bạn ơi lần sau bạn đăng bài thì cố gắng đăng giãn giãn bớt bớt/ chia nhỏ bài ra chứ một cục bài như thế này nhìn rất đáng sợ và gây tâm lý ngại đọc nhé.
1. ĐKXĐ: $x\geq 1$
Đặt $x\sqrt{x-1}=a\Rightarrow x^3-x^2=x^2(x-1)=a^2$. PT đã cho trở thành:
$a^2+12a+20=0(*)$
Lại thấy rằng vì $x\geq 1$ nên $a\geq 0$
$\Rightarrow a^2+12a+20\geq 20>0$. Do đó $(*)$ vô nghiệm. Kéo theo PT ban đầu vô nghiệm.
2. ĐK: $x\geq -1$
$x^3+\sqrt{(x+1)^3}=9x+8$
$\Leftrightarrow x^3-9x-8+\sqrt{(x+1)^3}=0$
$\Leftrightarrow (x^2-x-8)(x+1)+(x+1)\sqrt{x+1}=0$
$\Leftrightarrow (x+1)(x^2-x-8+\sqrt{x+1})=0$
Nếu $x+1=0\Rightarrow x=-1$ (thỏa mãn)
Nếu $x^2-x-8+\sqrt{x+1}=0$
$\Leftrightarrow (x^2-9)-(x-3)+(\sqrt{x+1}-2)=0$
$\Leftrightarrow (x-3)\left(x+3+\frac{1}{\sqrt{x+1}+2}}-1\right)=0$
Dễ thấy với $x\geq -1$ thì biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó $x-3=0\Rightarrow x=3$
Vậy $x=-1$ hoặc $x=3$