2. Rút gọn biểu thức:
a) (x + 5) (x - 5) + x(3 - x)
b) (3x - 2)2 - 2 ( 3x - 2)(3x + 5) + (3x + 5)2
rút gọn các biểu thức:
a) (x-2)2-(2x-1)2+(3x-1)(x-5)
b) (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
Rút gọn biểu thức:
a) (x+1)2 + (x – 1)2 – 2(1 + x)(1 - x)
b) 2x(2x – 1)2 – 3x(x+3)(x – 3) – 4x(x+1)2
c) 3(x + 2)2 – (3x + 1)(x + 5) + (x + 5)2
a: Ta có: \(\left(x+1\right)^2+\left(x-1\right)^2-2\left(1+x\right)\left(1-x\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x+1+x-1\right)^2\)
\(=4x^2\)
c: Ta có: \(3\left(x+2\right)^2-\left(3x+1\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=3x^2+12x+12-3x^2-16x-5+x^2+10x+25\)
\(=x^2+6x+32\)
Rút gọn biểu thức:
a) (x+2)(x-2)-(x-3)(x+1)
b) (x2-5)(x+3)+(x+4)(x-x2)
c)(x-5)(2x+3)-2x(x-3)+x+7
d)(2x+1)2+(3x-1)2+2(2x+1)(3x-1)
\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)
Rút gọn biểu thức:
a) (x 2 – 2x + 2)(x 2 – 2)(x 2 + 2x + 2)(x 2 + 2)
b) (x + 1)2 – (x – 1)2 + 3x 2 – 3x(x + 1)(x – 1)
c) (2x + 1)2 + 2(4x 2 – 1) + (2x – 1)2
d) (m + n)2 – (m – n)2 + (m – n)(m + n)
e) (3x + 1)2 – 2(3x + 1)(3x + 5) + (3x + 5)2
a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)
\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)
\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)
\(=x^8-16\)
b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)
\(=3x^2+4x-3x^3+3x\)
\(=-3x^3+3x^2+7x\)
Bài 1: Rút gọn biểu thức:
A = 2x3 + 3(x -1)(x +1) – 5x(x+1)
B = (5-2x)3 – (3x +5)(5-3x)
C = (3x +1)2 – (2x -1)2
D = (2x+1)3 + (3-x)2– 2(2x+1)(3 - x)
E = (x-2)3 – x(x+1)(x-1) +6x(x-3)
F = (x-1)3 -3(1-x)(x+1) – (x2 +x +1)(x-1) -3x
\(A=2x^3+3x^2-3-5x^2-5x=2x^3-2x^2-5x-3\\ B=125-150x+60x^2-8x^3-25+9x^2=-8x^3+69x^2-150x+100\\ C=\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=5x\left(x+2\right)=5x^2+10x\\ D=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\\ E=x^3-6x^2+12x-8-x^3+x+6x^2-18x=-5x-8\\ F=x^3-3x^2+3x-1-3+3x^2-x^3+1-3x=-3\)
Bài 1: Rút gọn biểu thức:
a) 2x(3x-5)-6x2 b) (x+3)(1-x)+(x-2)(x+2) c) (3x+1)2-(1+3x)(6x-2)+(3x-1)2
Bài 2: Phân tích đa thức thành nhân tử:
a) 9x2-1 b) 2(x-1)+x2-x c) 3x2+14x-5
Bài 3: Tìm x biết:
a) 2x(x-1)-2x2=4 b) x(x-3)-(x+2)(x-1)=5 c) 4x2-25+(2x+5)2=0
Bài 4: Cho tam giác ABC , có D là trung điểm đoạn thẳng BC , E là trung điểm của AB lấy điểm F đối xứng với điểm D qua E .
a) Chứng minh tứ giác FADB là hình bình hành.
b) Kẻ FG vuông với AB ; DH vuông với AB ; (G;HϵAB). Chứng minh FD=AC;\(\widehat{BFH}\)=\(\widehat{ADG}\).
c) Vẽ điểm Q đối xứng với điểm C qua A , DQ cắt đoạn AB tại điểm I , M là trung điểm AD.
Chứng minh F , M , I thẳng hàng
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Bài 1: Khai triển hằng đẳng thức:
a, ( x - y + 2z )2
b, ( 2x-3 ). ( 2x+3 ) . ( 4x2+9 )
Bài 2: Rút gọn biểu thức:
a, ( 5x+2 ).( 2-5x ) - ( 3x+2 ).( 2x+5 )2
b, ( -2x-3 )2 + 2(2x+1).( 2x+5 ) + ( 2x+5 )2
Bài 1:
a, \(\left(x-y+2z\right)^2=x^2+y^2+4z^2-2xy-4yz+4zx\)
b, \(\left(2x-3\right)\left(2x+3\right)\left(4x^2+9\right)=\left(4x^2-9\right)\left(4x^2+9\right)=16x^4-81\)
rút gọn biểu thức
a)(2x-3)(x-2)
b)2x(5-3x)-3(x-7)
c)3x(2-3x)+3x(3x-2)-5(x-7)
a) (2x-3)(x-2) = 2x2 - 3x - 4x +6 = 2x2 - 7x +6
b)2x(5-3x)-3(x-7) = 10x-6x2-3x+21= -6x2+7x+21
c)3x(2-3x)+3x(3x-2)-5(x-7) = 3x(2-3x) - 3x(2-3x) - 5(x-7)= -5(x-7)= -5x + 35
Rút gọn các biểu thức sau:
a,(3x+1)^2-2(3x+1)(3x-5)+(3x-5)^2
b,(3x^2-y)^2
c,(3x+5)^2+(3x-5)^2-(3x+2)(3x-2)
d,2x(2x-1)^2-3x(x+3)(Õ-3)-4x(x+1)^2
e,(x-2)(x^2+2x+4)-(x+1)^2+3(x-1)(x+1)
f,(x^4-5x^2+25)(x^2+5)-(2+x^2)^2+3(1+x^2)^2
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
Rút gọn biểu thức
a) (x-3)(3x+2)-3x(x-5)+3
b) 2x(x-3)-(x-5)(2x-1)
c) (3x+2)(3x-2)+(4x-1)(x+2)-3
a) \(\left(x-3\right)\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.\left(3x+2\right)-3.\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.3x+x.2-3.3x-3.2-3x.x+3x.5+3\)
\(=3x^2+2x-9x-6-3x^2+15x+3\)
\(=8x-3\)
b )
\(2x\left(x-3\right)-\left(x-5\right)\left(2x-1\right)\)
\(2x.x-2x.3-x.\left(2x-1\right)-5.\left(2x-1\right)\)
\(2x.x-2x.3-x.2x+x.1-5.2x+5.x\)
\(2x^3-6x-2x^2+x-10x+5x\)
\(2x^3-15x-2x^2\)
muốn nhân đa thức với đa thức khỏi cần phải nhân từng đa thức với đơn thức .... Thì ta nhân luôn .... Lấy cả dấu mà nhân:
VD: \(\left(x-5\right)\left(2x-1\right)=x.2x+\left(-5\right).2x+x.\left(-1\right)+\left(-5\right)\left(-1\right)\)
Nhưng khi biết rồi thì nhẩm rồi viết ra kết quả cuối cho nhanh .... còn các câu hình như đồng dạng đó