Những câu hỏi liên quan
HL
Xem chi tiết
CT
13 tháng 12 2022 lúc 22:52

\(\Rightarrow\sqrt{2}.sin\left(3x-\dfrac{\pi}{4}\right)-\sqrt{2}.sin\left(5x-\dfrac{\pi}{3}\right)=0\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\left(5x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\\\pi-3x+\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{19\pi}{96}+\dfrac{k\pi}{4}\end{matrix}\right.\); k\(\in Z\)

 

Bình luận (0)
VD
Xem chi tiết
NL
22 tháng 12 2022 lúc 17:08

Đề là \(sin\left(5-\dfrac{\pi}{3}\right)\) hay \(sin\left(5x-\dfrac{\pi}{3}\right)\) nhỉ?

Bình luận (1)
NL
22 tháng 12 2022 lúc 17:18

\(sin3x-cos3x=\sqrt{2}sin\left(5x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\dfrac{\pi}{4}\right)=\sqrt{2}sin\left(5x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x-\dfrac{\pi}{3}\right)=sin\left(3x-\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{\pi}{3}=3x-\dfrac{\pi}{4}+k2\pi\\5x-\dfrac{\pi}{3}=\dfrac{5\pi}{4}-3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{96}+\dfrac{k\pi}{4}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 8 2023 lúc 20:22

a: sin x=-6/5=-1,2

mà -1<=sin x<=1

nên \(x\in\varnothing\)
b: sin3x=căn 3/2

=>3x=pi/3+k2pi hoặc 3x=2/3pi+k2pi

=>x=pi/9+k2pi/3 hoặc x=2/9pi+k2pi/3

c: \(sin\left(x+\dfrac{pi}{3}\right)=sin\left(\dfrac{3}{4}pi\right)\)

=>x+pi/3=3/4pi+k2pi hoặc x+pi/3=1/4pi+k2pi

=>x=5/12pi+k2pi hoặc x=-1/12pi+k2pi

d: =>sin(x+5/6pi)=5/4

mà sin(x+5/6pi) thuộc [-1;1]

nên \(x\in\varnothing\)

Bình luận (0)
QA
Xem chi tiết
NC
Xem chi tiết
NL
15 tháng 8 2021 lúc 23:07

Đặt \(x+\dfrac{\pi}{6}=t\Rightarrow x=t-\dfrac{\pi}{6}\Rightarrow3x=3t-\dfrac{\pi}{2}\)

\(2cost=sin\left(3t-\dfrac{\pi}{2}\right)-cos\left(3t-\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow2cost=-cos3t-sin3t\)

\(\Leftrightarrow2cost=3cost-4cos^3t+4sin^3t-3sint\)

\(\Leftrightarrow4sin^3t-3sint+cost-4cos^3t=0\)

\(cost=0\) không phải nghiệm

\(\Rightarrow4tan^3t-3tant\left(1+tan^2t\right)+1+tan^2t-4=0\)

\(\Leftrightarrow tan^3t+tan^2t-3tant-3=0\)

\(\Leftrightarrow\left(tant+1\right)\left(tan^2t-3\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
HP
Xem chi tiết
TN
16 tháng 12 2020 lúc 23:24

\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1

<=> cosx-sinx=1 

\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)

Bình luận (0)
LC
Xem chi tiết
NC
5 tháng 9 2021 lúc 19:50

1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)

⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)

⇔ 2cos2x - 5cosx + 2 = 0

⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên

2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)

⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0 

⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)

⇒ sin4x + cos4x = 48.sin4x . cos4x

⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x

⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)

⇔ 1 - 2sin22x = 0

⇔ cos4x = 0

⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

 

Bình luận (0)
NC
5 tháng 9 2021 lúc 20:11

3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)

⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)

⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)

⇔ sin2x - sin22x - (1 + cos4x) = 0

⇔ sin2x - sin22x - 2cos22x = 0

⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0

⇔ sin22x + sin2x - 2 = 0

⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)

⇔ sin2x = 1

⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

4, cos5x + cos2x + 2sin3x . sin2x = 0

⇔ cos5x + cos2x + cosx - cos5x = 0

⇔ cos2x + cosx = 0

⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)

⇔ \(cos\dfrac{3x}{2}=0\)

⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)

Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)

⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn là các phần tử của tập hợp 

\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)

Bình luận (2)
NC
5 tháng 9 2021 lúc 20:18

5, \(\dfrac{cos^2x+sin2x+3sin^2x+3\sqrt{2}sinx}{sin2x-1}=1\)

⇒ \(cos^2x+sin2x+3sin^2x+3\sqrt{2}sinx=sin2x-1\)

⇒ cos2x + 3sin2x + 3\(\sqrt{2}\)sin2x + 1 = 0

⇔ 2 + 2sin2x + 3\(\sqrt{2}\)sin2x = 0

⇔ 2 + 1 - cos2x + 3\(\sqrt{2}\) sin2x = 0

⇔ \(3\sqrt{2}sin2x-cos2x=-1\)

Còn lại tự giải

7, \(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)

⇔ \(2cos2x.cos\dfrac{\pi}{4}+4sinx=2+\sqrt{2}\left(1-sinx\right)\)

⇔ \(\sqrt{2}cos2x+4sinx=2+\sqrt{2}-\sqrt{2}sinx\)

Dùng công thức : cos2x = 1 - 2sin2x đưa về phương trình bậc 2 ẩn sinx

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 9 2023 lúc 22:26

a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=-sin\left(x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k\pi\\2x+\dfrac{\pi}{6}=\pi-\dfrac{\pi}{3}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k\pi\\2x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{6}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{7\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+\left(k+1\right)\pi\end{matrix}\right.\)

Bình luận (0)
NT
11 tháng 9 2023 lúc 22:44

c: =>\(cos\left(x-\dfrac{pi}{6}\right)=-sin\left(2x+\dfrac{pi}{3}\right)\)

=>\(cos\left(x-\dfrac{pi}{6}\right)=sin\left(-2x-\dfrac{pi}{3}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(\dfrac{pi}{2}-x+\dfrac{pi}{6}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(-x+\dfrac{2}{3}pi\right)\)

=>\(\left[{}\begin{matrix}-2x-\dfrac{pi}{3}=-x+\dfrac{2}{3}pi+k2pi\\-2x-\dfrac{pi}{3}=pi+x-\dfrac{2}{3}pi+k2pi\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-x=pi+k2pi\\-3x=\dfrac{2}{3}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-pi-k2pi\\x=-\dfrac{2}{9}pi-\dfrac{k2pi}{3}\end{matrix}\right.\)

Bình luận (0)
CO
Xem chi tiết
AB
5 tháng 8 2017 lúc 12:24

\(cos\cdot\left(3x-\dfrac{\pi}{6}\right)=sin\cdot\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{6}=\dfrac{\pi}{4}-x+k2\pi\\3x-\dfrac{\pi}{6}=\dfrac{-\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{-\pi}{12}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{48}+\dfrac{k\pi}{2}\\x=\dfrac{-\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

Bình luận (0)
SB
Xem chi tiết
NL
23 tháng 6 2021 lúc 21:58

a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)

\(\Rightarrow3x+60=30+2k180\)

\(\Rightarrow3x=2k180-30\)

\(\Leftrightarrow x=120k-10\)

Vậy ...

b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)

Vậy ...

c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)

\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Vậy ...

d, Ta có : \(\cot\left(2x+\pi\right)=-1\)

\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)

\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)

Vậy ...

 

Bình luận (0)
LH
23 tháng 6 2021 lúc 21:58

a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)

Vậy...

d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)

\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)

\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)

Vậy...

Bình luận (0)