Những câu hỏi liên quan
CT
Xem chi tiết
H24
Xem chi tiết
LF
30 tháng 5 2016 lúc 6:07

PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2. 
Khi đó: x^2 + 9 = t - 9(x-1)/2 
x^2 + 9x = t + 9(x-1)/2 
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2 
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2 
<=> t^2 = (169/4)(x-1)^2 
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1) 
<=> 2t =13x -13 hoặc 2t =-13x + 13 
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13 
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0 

PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là: 
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2. 
 

Bình luận (0)
LF
30 tháng 5 2016 lúc 6:08

cách 2:đặt x-1=k

pt trở thành (k+1)(k2+2k+10)(k+10)=22k2

<=>(k2+2k+10)(k2+11k+10)=22k2

tự làm tiếp

Bình luận (0)
LF
30 tháng 5 2016 lúc 6:10

cách 3:tui ko nhớ rõ nhưng nhân tung rồi nhóm lại là đc

Bình luận (0)
TD
Xem chi tiết
CH
27 tháng 4 2022 lúc 15:58

Xét hàm số f(x)=m(x+1)2(x−2)3+(x+2)(x−3)f(x)=m(x+1)2(x−2)3+(x+2)(x−3) xác định và liên tục trên RR

⇒f(x)⇒f(x) xác định và liên tục trên [−2;3][−2;3].

Ta có: {f(−2)=−64mf(3)=16m⇒f(−2).f(3)=−1024m2{f(−2)=−64mf(3)=16m⇒f(−2).f(3)=−1024m2.

+ Với m=0⇒f(−2)=f(3)=0m=0⇒f(−2)=f(3)=0

⇒⇒ Phương trình f(x)=0f(x)=0 có nghiệm x=−2,x=−2, x=3.x=3.

+ Với m≠0⇒f(−2).f(3)<0m≠0⇒f(−2).f(3)<0

⇒⇒ Phương trình f(x)=0f(x)=0 có ít nhất một nghiệm thuộc (−2;3)(−2;3).

Vậy phương trình f(x)=0f(x)=0 luôn có nghiệm với mọi tham số m.

Bình luận (0)
NT
27 tháng 4 2022 lúc 16:17

loading...loading...

Bình luận (0)
VH
27 tháng 4 2022 lúc 16:43

Xét hàm số \(f\left(x\right)=m\left(x+1\right)^2\left(x-2\right)^3+\left(x+2\right)\left(x-3\right)\)
f(x)=m(x+1)2(x−2)3+(x+2)(x−3), \(D=ℝ\)
R⇒f(x)⇒f(x) xác định và liên tục trên [−2;3][−2;3].

Ta có: \(\left\{{}\begin{matrix}f\left(-2\right)=-64m\\f\left(3\right)=16m\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-1024m^2\)

+ Với m=0⇒f(−2)=f(3)=0m=0⇒f(−2)=f(3)=0

⇒⇒ Phương trình f(x)=0f(x)=0 có nghiệm x=−2,x=−2, x=3.x=3.

+ Với m≠0⇒f(−2).f(3)<0m≠0⇒f(−2).f(3)<0

⇒⇒ Phương trình f(x)=0f(x)=0 có ít nhất một nghiệm thuộc (−2;3)(−2;3).

Vậy phương trình f(x)=0f(x)=0 luôn có nghiệm với mọi tham số m.

Bình luận (0)
TM
Xem chi tiết
N1
Xem chi tiết
LT
18 tháng 11 2015 lúc 23:15

toán lớp mấy đó???

 

Bình luận (0)
QA
Xem chi tiết
PQ
17 tháng 3 2018 lúc 10:22

Để mình đưa công thức tổng quát luôn khỏi mất công bạn đăng câu hỏi cho mệt =.= 

Với mọi \(a,n\inℕ^∗\) 

Cần chứng minh : 

\(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)

Ta có : 

\(\frac{1}{a}-\frac{1}{a+n}=\frac{a+n}{a\left(a+n\right)}-\frac{a}{a\left(a+n\right)}=\frac{a+n-a}{a\left(a+n\right)}=\frac{n}{a\left(a+n\right)}\) ( đpcm ) 

Vậy với mọi \(a,n\inℕ^∗\) thì \(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
17 tháng 3 2018 lúc 10:16

Ta có : 

\(\frac{1}{x}-\frac{1}{x+2}=\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}=\frac{x+2-x}{x\left(x+2\right)}=\frac{2}{x\left(x+2\right)}\) ( đpcm ) 

Vậy với mọi \(x\inℕ^∗\) ta luôn có \(\frac{2}{x\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
19 tháng 3 2018 lúc 10:37

Mình mới nghĩ ra một cách chứng minh khác nàk bạn tham khảo nhé :) 

Ta có công thức tổng quát : 

\(\frac{n}{a\left(a+n\right)}=\frac{a+n-a}{a\left(a+n\right)}=\frac{a+n}{a\left(a+n\right)}-\frac{a}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\) ( từ tích thành hiệu ) 

Tương tự như vậy đối với : 

\(\frac{2}{x\left(x+2\right)}=\frac{x+2-x}{x\left(x+2\right)}=\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\) ( từ tích thành hiệu )

Chúc bạn học tốt ~ 

Bình luận (0)
DN
Xem chi tiết
NL
15 tháng 3 2022 lúc 23:05

Tìm 2 giá trị của x để hàm \(f\left(x\right)\) nhận kết quả trái dấu là được.

a.

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-1< 0\) (chọn \(x=0\) do nó làm triệt tiêu tham số m, thường sẽ ưu tiên chọn những giá trị x kiểu thế này. Ở câu này, có đúng 1 giá trị x khiến m triệt tiêu nên phải chọn thêm)

\(f\left(-1\right)=m^2-1+6-1=m^2+4>0\) với mọi m (để ý rằng ta đã có \(f\left(0\right)\) âm nên cần chọn x sao cho \(f\left(x\right)\) dương, mà \(-m^2\) nên ta nên chọn x sao cho nó chuyển dấu thành \(m^2\))

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0;\forall m\)

\(\Rightarrow\) Hàm luôn có ít nhất 1 nghiệm thuộc  \(\left(-1;0\right)\) với mọi m

Hay với mọi m thì pt luôn luôn có nghiệm

Bình luận (0)
NL
15 tháng 3 2022 lúc 23:13

b.

Đặt \(f\left(x\right)=\left(m^2+m+5\right)\left(3-x\right)^{2021}x+x-4\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-4< 0\) 

(Tới đây, nếu ta chọn tiếp \(x=3\) để triệt tiêu m thì cho \(f\left(3\right)=-1\) vẫn âm, ko giải quyết được vấn đề, nên ta phải chọn 1 giá trị khác. Thường trong những trường hợp xuất hiện \(m^2\) thế này, cố gắng chọn x sao cho hệ số của \(m^2\) dương (nếu cần \(f\left(x\right)\) dương, còn cần \(f\left(x\right)\) âm thì chọn x sao cho hệ số \(m^2\) âm). Ở đây dễ nhất là chọn \(x=2\) , vì khi đó \(\left(3-2\right)^{2021}=1\) vừa đảm bảo hệ số \(m^2\) dương vừa dễ tính toán, nếu chọn \(x=1\) cũng được thôi nhưng quá to sẽ rất khó biến đổi)

\(f\left(2\right)=\left(m^2+m+5\right).\left(3-2\right)^{2021}.2+2-4=2\left(m^2+m+5\right)-2\)

 \(=2m^2+2m+8=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{2}>0;\forall m\)

\(\Rightarrow f\left(0\right).f\left(2\right)< 0;\forall m\Rightarrow\) hàm luôn có ít nhất 1 nghiệm thuộc \(\left(0;2\right)\) với mọi m

Hay pt đã cho luôn có nghiệm với mọi m

Bình luận (0)
DN
15 tháng 3 2022 lúc 23:15

Dạ em cảm ơn thầy nhiều ạ!

Bình luận (0)
CL
Xem chi tiết
CL
16 tháng 6 2019 lúc 22:20

Câu 8 :

\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)

Đặt \(x-1=a\)

\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)

\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)

\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)

\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)

\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)

\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)

\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)

\(N=\frac{-x\left(x+1\right)}{x+1}\)

\(N=-x\)( đpcm )

Bình luận (0)
CL
16 tháng 6 2019 lúc 22:24

Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :

\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)

Bài làm :

\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)

\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)

\(P=x\left(x+4\right)+9\)

\(P=x^2+4x+9\)

\(P=\left(x+2\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-2\)

Bình luận (0)
CL
16 tháng 6 2019 lúc 22:32

Bài 10 : Tìm GTLN

\(Q=\left(\frac{x^3+8}{x^3-8}\cdot\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)

\(Q=\left[\frac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\frac{4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right]:\frac{-16}{x\left(x^3-6x^2+12x-8\right)}\)

\(Q=\left(\frac{4\left(x^2-2x+4\right)}{\left(x-2\right)^2}-\frac{4x\left(x-2\right)}{\left(x-2\right)^2}\right):\frac{-16}{x\left[x^2\left(x-2\right)-4x\left(x-2\right)+4\left(x-2\right)\right]}\)

\(Q=\frac{4x^2-8x+16-4x^2+8x}{\left(x-2\right)^2}:\frac{-16}{x\left(x-2\right)\left(x^2-4x+4\right)}\)

\(Q=\frac{16}{\left(x-2\right)^2}\cdot\frac{-x\left(x-2\right)\left(x-2\right)^2}{16}\)

\(Q=-x\left(x-2\right)\)

\(Q=-x^2+2x\)

\(Q=-x^2+2x-1+1\)

\(Q=1-\left(x-1\right)^2\le1\forall x\)

Dấu "=" \(\Leftrightarrow x=1\)

Vậy....

Bình luận (0)
NS
Xem chi tiết
H24
26 tháng 4 2022 lúc 12:16

\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)

\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

 

 

 

Bình luận (0)