Chứng minh rằng với mọi x ta luôn có :
\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\right)\sqrt{x^2+x+1}\)
Chứng minh rằng với \(x>1\)
ta luôn có: \(3\left(x^2-\frac{1}{x^2}\right)<2\left(x^3-\frac{1}{x^3}\right)\)
CMR: với mọi x>1 ta luôn có: \(3\left(x^2-\frac{1}{x^2}\right)< 2\left(x^3-\frac{1}{x^3}\right)\)
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Chứng minh rằng phương trình :
\(k\left(x^2-4x+3\right)+2\left(x-1\right)=0\)luôn có nghiệm với mọi giá trị của k
Chứng minh rằng với mọi 0 ≤ x ≤ 1 ta luôn có :
\(x\left(9\sqrt{1+x^2}+13\sqrt{1-x^2}\right)\le16\)
Olympic 30/4 , 1996
\(m\left(x^2-4x+3\right)+2\left(x-1\right)\)=0
chứng minh rằng phương trình đã cho luôn có nghiệm với mọi giá trị của m
Chứng minh các phương trình sau luôn có nghiệm với mọi giá trị của tham số m :
\(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3=0\)
chứng minh rằng với mọi x > 1 ta luôn có 3*(x^2 - 1/x^2)< 2*(x^3 -1/x^3)