Những câu hỏi liên quan
H24
Xem chi tiết
NL
15 tháng 12 2020 lúc 0:45

\(VT=\sqrt{\left(x+2\right)^2+4}+\sqrt{\left(3-x\right)^2+1}\)

\(VT\ge\sqrt{\left(x+2+3-x\right)^2+\left(2+1\right)^2}=\sqrt{34}\)

Pt có nghiệm khi và chỉ khi \(m\ge\sqrt{34}\)

Bình luận (0)
NP
Xem chi tiết
NT
12 tháng 9 2021 lúc 20:57

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-5\end{matrix}\right.\)

b: ĐKXĐ: \(x=2\)

c: ĐKXĐ: \(x\ge4\)

Bình luận (0)
NP
Xem chi tiết
TC
16 tháng 7 2021 lúc 17:50

undefined

Bình luận (2)
NP
16 tháng 7 2021 lúc 17:35

cứu mị :<

 

Bình luận (0)
TC
16 tháng 7 2021 lúc 17:54

undefined

Bình luận (1)
LL
Xem chi tiết
TH
25 tháng 5 2021 lúc 18:59

ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

Bình luận (0)
TH
25 tháng 5 2021 lúc 19:18

b) ĐKXĐ: \(-1\le x\le3\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).

d) ĐKXĐ: \(x< \dfrac{3}{5}\).

Bình luận (0)
YH
Xem chi tiết

cho gì bạn?

Bình luận (0)
YH
28 tháng 7 2019 lúc 19:39

Bị lỗi rồi cậu ơi :(

Bình luận (0)
NH
28 tháng 7 2019 lúc 19:39

cho........gi

Bình luận (0)
NT
Xem chi tiết
BH
10 tháng 8 2017 lúc 14:22

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

Bình luận (0)
NT
10 tháng 8 2017 lúc 15:33

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

Bình luận (0)
BH
12 tháng 8 2017 lúc 11:06

Thì \(\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}=1\)

Bình luận (0)
TC
Xem chi tiết
3P
Xem chi tiết
H24
21 tháng 12 2023 lúc 16:26

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

Bình luận (0)
NT
21 tháng 12 2023 lúc 17:52

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

Bình luận (0)
TH
21 tháng 12 2023 lúc 18:12

Bài 3

a)\(\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\)

Vậy PT có nghiệm x=6

b)\(\sqrt{4x^2+4x+1}-11=5\Leftrightarrow\sqrt{\left(2x+1\right)^2}=16\Leftrightarrow2x+1=16hoặc2x+1=-16\)

+)TH1: \(2x+1=16\Leftrightarrow x=\dfrac{15}{2}\Leftrightarrow x=7,5\)

+)TH2:\(2x+1=-16\Leftrightarrow x=\dfrac{17}{2}\Leftrightarrow x=8,5\)

Bài 4

a)\(C=1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\Leftrightarrow C=\dfrac{x-1}{\sqrt{x}}\left(\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\Leftrightarrow C=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}\dfrac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\Leftrightarrow C=\dfrac{2x}{\sqrt{x}}\Leftrightarrow C=2\sqrt{x}\)

\(Vậy\) \(C=2\sqrt{x}\)

Bình luận (0)
NT
Xem chi tiết
HT
Xem chi tiết