Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
DT
28 tháng 10 2023 lúc 20:35

yêu cầu là j vậy bạn

Bình luận (0)
H24
13 tháng 10 2024 lúc 11:38

A = 2 + 22 + 23 + … + 22004 . Chứng minh rằng A chia hết cho 3 , cho 7. 

 

Bình luận (0)
VH
Xem chi tiết
VH
14 tháng 10 2023 lúc 21:08

giúp e với ạ

gấp rút 

ai gửi đầu tiên e tim cho

Bình luận (0)
LY
14 tháng 10 2023 lúc 21:20

mik bt lm câu 1 thôi nha, bn thông cảm:

a = 2007.2009                              b = 20082

  =(2008 - 1)(2008 + 1)

  = 20082 - 1

Ta có, a = 20082 - 1, b = 20082

mà 20082 - 1 < 20082

=> a < b

Bình luận (0)
LY
14 tháng 10 2023 lúc 21:26

 

 

 

câu 2 nè nha bn

Bình luận (0)
HP
Xem chi tiết
HP
28 tháng 12 2021 lúc 20:32

nhanh nhanh nhanh nhanh nhanh nhanh nhanh nhanh

 

 

Bình luận (0)
H24
28 tháng 12 2021 lúc 20:33

\(A=1+2+2^2+...+2^{2020}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A-A=2+2^2+2^3+...+2^{2021}-1-2-2^2-...-2^{2020}\)

\(\Rightarrow A=2^{2021}-1\)

\(\Rightarrow A=2^{2021}-1=B\)

Bình luận (0)
AD
28 tháng 12 2021 lúc 20:34

sorry mình chưa học

Bình luận (0)
LH
Xem chi tiết
GM
Xem chi tiết
B1
15 tháng 5 2022 lúc 22:13

undefined

Bình luận (0)
B1
15 tháng 5 2022 lúc 22:14

undefined

Bình luận (0)
B1
15 tháng 5 2022 lúc 22:16

giải ròi đó nhoa

Bình luận (0)
LH
Xem chi tiết
H24
Xem chi tiết
NN
14 tháng 5 2023 lúc 15:27

\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)

\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(S=2-\dfrac{1}{2^{2006}}\)

Bình luận (0)
NT
Xem chi tiết
LL
25 tháng 9 2021 lúc 15:31

\(A=1+2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)

Bình luận (0)
NM
25 tháng 9 2021 lúc 15:32

\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)

Bình luận (0)
NN
Xem chi tiết
NH
6 tháng 3 2022 lúc 22:24

\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)

vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)

Bình luận (0)
HL
Xem chi tiết
HL
25 tháng 12 2021 lúc 10:36

giúp mình với

Bình luận (0)