Bài 8: Cho đa thức: P(x)= \(2x^4+3x^2+4\)
a) Tính P(0), P(1); P(-1),P(2); P(-2); P(\(\dfrac{-2}{3}\))
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
Bài 1:Cho đa thức P(x)=3x^4+2x^2-3x^4-2x^2+2x-5 a)Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến b)Tính P(-1);P(3) Bài 2:Cho 2 đa thức f(x)=x^2-6x+4 và g(x)=x^2-4x-2 a)Tính f(x)+g(x) b)Tính f(x)-g(x) c)Tìm x sao cho h(x)=f(x)-g(x)=0
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
Bài 2:
a) Ta có: f(x)+g(x)
\(=x^2-6x+4+x^2-4x-2\)
\(=2x^2-10x+2\)
Bài 1: Cho đa thức f(x)= \(2x^3-x^5+3x^4+x^2-0,5x^3-2x^2-x^4+1.\)
a) Thu gọn và xác định bậc của đa thức trên.
b) Sắp xếp đa thức theo lũy thừa giảm dần của biến.
Bài 2: Cho A(x)=\(3x^5+2x^4-4x^2-2x+1\)và B(x)=\(-x^4+3x^3-2x^2+x^3-3x+2-3x^{\text{4}}.\)
a) Thực hiện thu gọn ( nếu có) các đa thức trên.
b) Tính 2A(x)+3B(x); 4A(x)-5B(x).
Cho 2 đa thức: P(x)=3x^2+7+2x^4-3x^2-4-5x+2x^3 và Q(x)=3x^3+2x^2-x^4+x+x^3+4x-2+5x^4 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến. b) Tính P(-1) và Q(0) c) Tính G(x) = P(x) + Q(x) d) Chứng tỏ rằng đa thức G(x) luôn dương với mọi giá trị của x
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
1) Xác định số a,b để đa thức x^4-3x^3+3x^2 +ax+b chia hết cho đa thức x^2-3x+4
2)Cho x+y=1.Tính giá trị của biểu thức: A=x^3+y^3+3xy
3)Tình già trị của biểu thức M=x^6 -2x^4+x^3+x^2-x biết x^3-x=8
4)Chứng minh rằng lập phương của một số nguyên cộng với 17 lần số đó một số chia hết cho 6
5) Chứng minh các biểu thức sau không phụ thuộc vào biến số x:
-x(x+2y)+(x+y)^2+(x-5)^2-(x-2)(x-8)+(3x-2)^2+3x(4-3x)
6) Cho a+b+c=0; a,b,c khác 0. Tính P=a^2 + b^2 + c^2
bc ca ab
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
Bài 1:Tìm nghiệm của đa thức sau:
a,C= 3x+5+(7-x)
b,D= 3(2x -8) -2(4-x)
Bài 2: Cho đa thức M(x)= 5x3 +2x4-x2 +3x2 -x3 -x4 +1 -4x3
Chứng tỏ đa thức M(x) không có nghiệm.
Bài 3: Cho đa thức f(x)= 2x4 + 3x +1
a, x=-1 có phải là nghiệm của f(x) không? Vì sao?
b, Chứng tỏ đa thức f(x) không có nghiệm dương.
CÁC BẠN GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài 4: Cho đa thức:
P(x)= 2x³ + x² +5 -3x + 3x²- 2x³ - 4x² + 1
a) Thu gọn P(x)
b) Tìm x để P(x) =0; P(x) =1
`a)` P(x)= 2x³ + x² +5 -3x + 3x²- 2x³ - 4x² + 1
`P(x) = (2x^3 -2x^3) + (x^2 +3x^2 -4x^2)-3x +(1+5)`
`P(x) = -3x +6`
Vậy `P(x) = -3x +6`
b) cho `P(x) = 0`
`<=> -3x+6 =0`
`-3x =-6`
`=> x =2`
cho P(x) =1
`=> -3x +6 =1`
`<=> -3x =-5`
`x =5/3`
1) Xác định a và b để cho P=x^4+2x^3+ax^2+2x+b là bình phương cuả một đa thức
2) Cho x=a+1. Chứng minh rằng: x^16-a^16=(x^8+a^8)(x^2+a^2)(x+a)
4) Cho a+b+c=0. Chứng minh rằng: 2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2
5) Với giá trị nào của a và b thì đa thức:
f(x)=x^4-3x^3+3x^2+ax+b chia hết cho đa thức g(x)=x^2-3x+4. Tìm đa thức thương.
6) Tìm x ; y ; z trong đẳng thức: x^2+4y^2+9z^2+2x+4y+6z+3=0 (pt)
7) Với a ; b ; c là độ dài 3 cạch của một tam giác. Chứng minh rằng biểu thức M=4b^2c^2-(b^2+c^2-a^2)^2>0
8) Chứng minh rằng (a-b) chia hết cho 6 <=> (a^3+b^3) chia hết cho 6
cho 2 đa thức P(x)=-2x^2+3x^4+x^3+x^2 - 1/4x Q(x)=3x^4+3x^2 - 1/4 - 4x^3 - 2x^2 a)sắp xếp các hạng tử của mỗi đa thức sau theo luỹ thừa giảm dần của biến b) tính p(x)+Q(x) và P(x) - Q(x) c) chứng tỏ x=0 là nghiệm của đa thức P(x) nhưng không là nghiệm của Q(x)