Bài 5: Đa thức

NN

Cho 2 đa thức: P(x)=3x^2+7+2x^4-3x^2-4-5x+2x^3 và Q(x)=3x^3+2x^2-x^4+x+x^3+4x-2+5x^4 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến. b) Tính P(-1) và Q(0) c) Tính G(x) = P(x) + Q(x) d) Chứng tỏ rằng đa thức G(x) luôn dương với mọi giá trị của x

KR
14 tháng 8 2023 lúc 21:48

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bình luận (2)

Các câu hỏi tương tự
PD
Xem chi tiết
VT
Xem chi tiết
PN
Xem chi tiết
LN
Xem chi tiết
LC
Xem chi tiết
TP
Xem chi tiết
TH
Xem chi tiết
PD
Xem chi tiết
TD
Xem chi tiết