Những câu hỏi liên quan
PB
Xem chi tiết
CT
3 tháng 10 2018 lúc 17:14

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2017 lúc 18:27

Phương trình x 2 – 2(m – 2)x + 2m – 5 = 0 có a = 1  0 và

∆ ' = ( m − 2 ) 2 – 2 m + 5 = m 2 – 6 m + 9 = ( m – 3 ) 2   ≥ 0 ; ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = 2 m − 4 x 1 . x 2 = 2 m − 5

X é t   x 1 ( 1 − x 2 ) + x 2 ( 2 – x 1 ) < 4 ⇔ ( x 1 + x 2 )   –   2 x 1 .   x 2 − 4 < 0

⇔ 2m – 4 – 2(2m – 5) – 4 < 0 ⇔ −2m + 2 < 0 m > 1

Vậy m > 1 là giá trị cần tìm

Đáp án: A

Bình luận (0)
NL
Xem chi tiết
NM
3 tháng 5 2022 lúc 21:19

Để  phương trình 1 có 2 nghiệm phân biệt

=> \(\Delta,>0\)  <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

=> Theo hệ thức Vi ét ta có 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)   

Theo bài ra ta có 

\(x_1-x_2=-2\circledcirc\)

Từ \(\circledast vaf\circledcirc\) ta có hệ pt 

\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)

Thay x1 và x2 vào \(\circledast\circledast\)ta dc

\(\left(m-2\right)m=-2m+5\)

<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)

Vậy ...

 

Bình luận (0)
H24
Xem chi tiết
AH
22 tháng 5 2021 lúc 2:44

Lời giải:

Để pt có 2 nghiệm thì:

$\Delta'=(m-1)^2+2m-5\geq 0$

$\Leftrightarrow m^2-4\geq 0$

$\Leftrightarrow m\geq 2$ hoặc $m\leq -2$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(1-m)\\ x_1x_2=-2m+5\end{matrix}\right.\)

\(2x_1+3x_2=-5\)

\(\Leftrightarrow 2(x_1+x_2)+x_2=-5\Leftrightarrow 4(1-m)+x_2=-5\)

\(\Leftrightarrow x_2=4m-9\)

\(x_1=2(1-m)-x_2=11-6m\)

$x_1x_2=-2m+5$

$\Leftrightarrow (4m-9)(11-6m)=-2m+5$

Giải pt này suy ra $m=2$ hoặc $m=\frac{13}{6}$ (đều thỏa mãn)

 

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 8 2019 lúc 9:06

Ta có x(3x – 1) – 5(1 – 3x) = 0

ó x(3x – 1) + 5(3x – 1) = 0 ó (3x – 1)(x + 5) = 0

ó x + 5 = 0 3 x - 1 = 0  ó x = - 5 3 x = 1  ó  x = - 5 x = 1 3

Suy ra

  x 1 = 1 3 ;   x 2 = - 5 ⇒ 3 x 1 - x 2 = 3 . 1 3 - - 5 = 6

Đáp án cần chọn là: C

Bình luận (0)
MN
Xem chi tiết
NL
30 tháng 8 2021 lúc 22:42

ĐKXĐ: \(x>0\)

\(x^{log_25}=t\Rightarrow25^{log_2x}=\left(5^{log_2x}\right)^2=\left(x^{log_25}\right)^2=t^2\)

\(x_1x_2=4\Rightarrow t_1t_2=\left(x_1x_2\right)^{log_25}=4^{log_25}=25\)

\(\left(m+1\right)t^2+\left(m-2\right)t-2m+1=0\) (1)

Pt có 2 nghiệm pb \(\Rightarrow\) (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)\left(-2m+1\right)>0\\t_1+t_2=\dfrac{2-m}{m+1}>0\\t_1t_2=\dfrac{-2m+1}{m+1}>0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\-1< m< \dfrac{1}{2}\end{matrix}\right.\)

Ủa làm đến đây mới thấy kì kì, chỉ riêng hệ điều kiện này đã ko tồn tại m nguyên rồi, chưa cần điều kiện \(x_1x_2=4\)

Bình luận (1)
NL
30 tháng 8 2021 lúc 23:22

\(t=1\) pt có nghiệm kép bạn ơi, ko phải 2 nghiệm pb như đề yêu cầu đâu

Bình luận (0)
TL
Xem chi tiết
MU
Xem chi tiết
AH
16 tháng 5 2021 lúc 21:13

Lời giải:

Để pt có 2 nghiệm pb thì:

$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)

Khi đó:

$2x_1^3+(m+2)x_2^2=5$

$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$

$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$

\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)

\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)

\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)

Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.

Bình luận (7)
HN
Xem chi tiết
TH
5 tháng 2 2023 lúc 16:56

Để phương trình (1) có nghiệm thì:

\(\Delta'\ge0\Rightarrow\left(m-1\right)^2-\left(2m-5\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-2m+5\ge0\)

\(\Leftrightarrow\left(m-2\right)^2+2\ge0\) (luôn đúng)

Vậy với \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Vi-et cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có: \(x_1< 2< x_2\Rightarrow\left\{{}\begin{matrix}x_1-2< 0\\x_2-2>0\end{matrix}\right.\)

\(\Rightarrow\left(x_1-2\right)\left(x_2-2\right)< 0\)

\(\Rightarrow x_1x_2-2\left(x_1+x_2\right)+4< 0\)

\(\Rightarrow2m-5-2.2\left(m-1\right)+4< 0\)

\(\Rightarrow2m-5-4m+4+4< 0\)

\(\Rightarrow-2m+3< 0\)

\(\Rightarrow m>\dfrac{3}{2}\)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 10 2017 lúc 15:32

Bình luận (0)