Những câu hỏi liên quan
3P
Xem chi tiết
AH
31 tháng 10 2023 lúc 13:22

Lời giải:

a.

 \(A=\frac{2(\sqrt{x}-4)-3(\sqrt{x}+4)}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{-\sqrt{x}-20}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}\\ =\frac{\sqrt{x}-4}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{1}{\sqrt{x}+4}\)

b. Khi $x=4-2\sqrt{3}=(\sqrt{3}-1)^2\Rightarrow \sqrt{x}=\sqrt{3}-1$

$A=\frac{1}{\sqrt{3}-1+4}=\frac{1}{\sqrt{3}+3}$

Bình luận (0)
LB
Xem chi tiết
NT
15 tháng 5 2021 lúc 13:10

a) Ta có: \(B=\left(\dfrac{x+3\sqrt{x}-3}{x-16}-\dfrac{1}{\sqrt{x}+4}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\)

\(=\left(\dfrac{x+3\sqrt{x}-3-\sqrt{x}+4}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\)

\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}-4}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\)

Bình luận (0)
TN
Xem chi tiết
NL
29 tháng 6 2021 lúc 21:47

b, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

Ta có : \(B=\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+4-x+2\sqrt{x}-4+x+2}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+2}{\sqrt{x}}\)

 

Bình luận (0)
NT
29 tháng 6 2021 lúc 21:48

b) Ta có: \(B=\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+x+2}{\sqrt{x}}\)

c) Ta có: \(C=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3-5+\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

Bình luận (0)
NM
Xem chi tiết
H24
5 tháng 11 2023 lúc 18:23

\(a,\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}\right):\dfrac{x+4}{x+2\sqrt{x}}\left(dkxd:x>0;x\ne4\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\cdot\dfrac{x+2\sqrt{x}}{x+4}\)

\(=\dfrac{x+2\sqrt{x}-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+4}\)

\(=\dfrac{x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(---\)

\(b,\) Để biểu thức trên bằng $-x$

thì \(\dfrac{\sqrt{x}}{\sqrt{x}-2}=-x\)

\(\Leftrightarrow\sqrt{x}=-x\sqrt{x}+2x\)

\(\Leftrightarrow x\sqrt{x}-2x+\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(x-2\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Kết hợp với ĐKXĐ của $x$, ta được:

\(x=1\)

Vậy biểu thức bằng $-x$ khi $x=1$

\(\text{#}Toru\)

Bình luận (0)
H24
Xem chi tiết
MY
16 tháng 5 2021 lúc 8:29

√x√x−2−6√x−4x−4(x\(\ge\)0,x\(\ne\)4)

=\(\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)}{x-4}\)-\(\dfrac{6\sqrt{x}-4}{x-4}\)=\(\dfrac{x+2\sqrt{x}}{x-4}\)-\(\dfrac{6\sqrt{x}-4}{x-4}\)

=\(\dfrac{x+2\sqrt{x}-6\sqrt{x}+4}{x-4}\)=\(\dfrac{x-4\sqrt{x}+4}{x-4}\)=\(\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)(1)

b, với x=6-4\(\sqrt{2}\)=(2-\(\sqrt{2}\))^2 thay vào (1) ta được

\(\dfrac{\sqrt{\left(2-\sqrt{2}\right)}^2-2}{\sqrt{\left(2-\sqrt{2}\right)}^2+2}\)=\(\dfrac{2-\sqrt{2}-2}{2-\sqrt{2}+2}\)=\(\dfrac{-\sqrt{2}}{4-\sqrt{2}}\)=\(\dfrac{\sqrt{2}}{\sqrt{2}-4}\)

 

 

 

Bình luận (0)
NM
16 tháng 5 2021 lúc 12:33

a)ĐKXĐ: x≠4;x≥0

=\(\dfrac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)

=\(\dfrac{x+2\sqrt{x}-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

b) thế x=\(6-4\sqrt{2}\) (thỏa mãn) vào bt ta đc:

\(\dfrac{\sqrt{6-4\sqrt{2}}-2}{\sqrt{6-4\sqrt{2}}+2}\)=\(\dfrac{\sqrt{\left(2-\sqrt{2}\right)^2}-2}{\sqrt{\left(2-\sqrt{2}\right)^2}+2}\)=\(\dfrac{-\sqrt{2}}{4-\sqrt{2}}\)=\(\dfrac{-1}{\sqrt{2}-1}\)=\(-\sqrt{2}-1\)

Bình luận (0)
1N
Xem chi tiết
H24
6 tháng 8 2023 lúc 11:23

\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)

__

Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)

\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)

 

 

Bình luận (1)
NL
Xem chi tiết
1N
Xem chi tiết
H9
7 tháng 8 2023 lúc 8:24

a) ĐKXĐ: \(x\ge0;x\ne9;x\ne4\)

\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) Ta có M ϵ Z thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}+\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Phải thuộc Z vậy:

4 ⋮ \(\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Mà: \(x\ge0,x\ne4,x\ne9\) nên \(\sqrt{x}-3\in\left\{1;2;-2;4\right\}\)

\(\Rightarrow x\in\left\{16;25;1;49\right\}\)

Bình luận (0)
NM
Xem chi tiết
H24
5 tháng 11 2023 lúc 18:33

\(a,\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{x+\sqrt{x}+2}{x-1}\right):\dfrac{1}{\sqrt{x}-1}\left(dkxd:x\ge0;x\ne1\right)\)

\(=\left[\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\left(\sqrt{x}-1\right)\)

\(=\dfrac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)

\(=\dfrac{\left(x+2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\)

\(=\sqrt{x}+1\)

\(b,\) Thay \(x=4-2\sqrt{3}\) vào biểu thức trên, ta được:

\(\sqrt{4-2\sqrt{3}}+1\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}+1\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+1\)

\(=\left|\sqrt{3}-1\right|+1\)

\(=\sqrt{3}-1+1\)

\(=\sqrt{3}\)

Vậy: ...

\(\text{#}Toru\)

Bình luận (0)
TA
5 tháng 11 2023 lúc 18:47

\(a\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{x+\sqrt{x}+2}{x-1}\right):\dfrac{1}{\sqrt{x}-1}\\ =\left(\dfrac{\sqrt{x}-1}{x-1}+\dfrac{x+\sqrt{x}+2}{x-1}\right).\sqrt{x}-1\\ =\dfrac{x+\sqrt{2}+1}{x-1}.\sqrt{x}-1\\ =\sqrt{x}+1\\ b,tacóx=4-2\sqrt{3}=\left(\sqrt{3}-\sqrt{1}\right)^2thãy=\sqrt{3}-\sqrt{1}vàobiểuthức,tađược\\ \sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-1=\sqrt{3}-1-1=\sqrt{3}-2\)

Bình luận (0)