Ôn thi vào 10

H24

\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6\sqrt{x}-4}{x-4}\)

a) Rút gọn

b) Tính giá trị của biểu thức với x= 6-4\(\sqrt{2}\)

MY
16 tháng 5 2021 lúc 8:29

√x√x−2−6√x−4x−4(x\(\ge\)0,x\(\ne\)4)

=\(\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)}{x-4}\)-\(\dfrac{6\sqrt{x}-4}{x-4}\)=\(\dfrac{x+2\sqrt{x}}{x-4}\)-\(\dfrac{6\sqrt{x}-4}{x-4}\)

=\(\dfrac{x+2\sqrt{x}-6\sqrt{x}+4}{x-4}\)=\(\dfrac{x-4\sqrt{x}+4}{x-4}\)=\(\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)(1)

b, với x=6-4\(\sqrt{2}\)=(2-\(\sqrt{2}\))^2 thay vào (1) ta được

\(\dfrac{\sqrt{\left(2-\sqrt{2}\right)}^2-2}{\sqrt{\left(2-\sqrt{2}\right)}^2+2}\)=\(\dfrac{2-\sqrt{2}-2}{2-\sqrt{2}+2}\)=\(\dfrac{-\sqrt{2}}{4-\sqrt{2}}\)=\(\dfrac{\sqrt{2}}{\sqrt{2}-4}\)

 

 

 

Bình luận (0)
NM
16 tháng 5 2021 lúc 12:33

a)ĐKXĐ: x≠4;x≥0

=\(\dfrac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)

=\(\dfrac{x+2\sqrt{x}-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

b) thế x=\(6-4\sqrt{2}\) (thỏa mãn) vào bt ta đc:

\(\dfrac{\sqrt{6-4\sqrt{2}}-2}{\sqrt{6-4\sqrt{2}}+2}\)=\(\dfrac{\sqrt{\left(2-\sqrt{2}\right)^2}-2}{\sqrt{\left(2-\sqrt{2}\right)^2}+2}\)=\(\dfrac{-\sqrt{2}}{4-\sqrt{2}}\)=\(\dfrac{-1}{\sqrt{2}-1}\)=\(-\sqrt{2}-1\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết