Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PH
Xem chi tiết
H24
10 tháng 5 2023 lúc 20:15

\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{25.28}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{3}{14}\)
\(=\dfrac{1}{14}\)
#NoSimp

Bình luận (0)
H24
10 tháng 5 2023 lúc 20:10

29/28

 

Bình luận (0)
PH
10 tháng 5 2023 lúc 20:11

sai rồi nha lmc1

Bình luận (0)
TH
Xem chi tiết
VP
21 tháng 8 2023 lúc 15:48

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)

\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)

\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)

\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)

\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)

\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)

\(\dfrac{1}{x+3}=\dfrac{1}{103}\)

\(\Rightarrow x+3=103\)

\(x=103-3\)

\(x=100\)

Vậy x = 100

Bình luận (0)
DL
Xem chi tiết
NL
28 tháng 4 2018 lúc 9:38

1.

E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)

E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)

E = 1 - \(\dfrac{1}{22}\)

E = \(\dfrac{21}{22}\)

2.

(x - 4)(x - 5) = 0

TH1:

x - 4 = 0 => x = 4

TH2:

x - 5 = 0 => x = 5

Vậy: x = 4 hoặc x = 5

Bình luận (4)
NT
Xem chi tiết
NT
2 tháng 8 2018 lúc 21:31

help me,sáng mai thầy kiểm tra bài của mìnhucche

Bình luận (0)
NN
2 tháng 8 2018 lúc 21:39

Ta có : A = 2/ 4.7 + 2/ 7.10 + ... + 2/ 73.76 .

⇒ 3/2 A = 3/2 . ( 2/ 4.7 + 2/ 7.10 + ... + 2/ 73.76 ) .

⇒ 3/2 A = 3/ 4.7 + 3/ 7.10 + ... + 3/ 73.76 .

= 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/ 73 - 1/76 .

= 1/4 - 1/76 .

= 19/76 - 1/76 .

= 9/38 .

Do đó : A = 9/38 : 3/2 .

= 9/38 . 2/3 .

= 3/19 .

Vậy A = 3/19 .

Bình luận (0)
NT
2 tháng 8 2018 lúc 21:54

cảm ơn mọi người nhiều lắmthanghoa

Bình luận (1)
VL
Xem chi tiết
TN
25 tháng 4 2018 lúc 18:31

\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}< \dfrac{1}{5}\)

=\(\dfrac{3}{3}\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}\right)\)

=\(\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{37.40}\right)\)

=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)

=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)\)

=\(\dfrac{3}{40}< \dfrac{1}{3}\)

Bình luận (0)
VM
Xem chi tiết
EC
27 tháng 4 2017 lúc 21:23

\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(A=3.\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)

Bình luận (0)
LL
27 tháng 4 2017 lúc 21:24

Hỏi đáp Toán

Bình luận (0)
HT
27 tháng 4 2017 lúc 21:34

\(A=\dfrac{3^2}{1\times4}+\dfrac{3^2}{4\times7}+\dfrac{3^2}{7\times10}+\dfrac{3^2}{10\times13}+\dfrac{3^2}{13\times16}...+\dfrac{3^2}{97\times100}\)

\(=3\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16} +...+\dfrac{3}{97\times100}\right)\)

\(=3\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)\(=3\times\left(1-\dfrac{1}{100}\right)\)

\(=3\times\dfrac{99}{100}\)

\(=\dfrac{297}{100}\)

\(=2\dfrac{97}{100}\)

Vậy \(A=2\dfrac{97}{100}\)

Bình luận (0)
LL
Xem chi tiết
KR
23 tháng 9 2023 lúc 15:16

`#3107`

`a)`

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{1999\cdot2000}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)

\(=1-\dfrac{1}{2000}\)

\(=\dfrac{1999}{2000}\)

`b)`

\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{100\cdot103}?\)

\(=\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{100\cdot103}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{102}{103}\)

\(=\dfrac{34}{103}\)

`c)`

\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-....-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\dfrac{8}{9}\\ =0\)

Bình luận (0)
VP
23 tháng 9 2023 lúc 15:20

b) Sửa đề:

 \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\left(\dfrac{103}{103}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\dfrac{102}{103}\)

\(=\dfrac{34}{103}\)

Bình luận (0)
VP
23 tháng 9 2023 lúc 15:24

c) \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-...-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\dfrac{8}{9}\)

\(=0\)

\(#WendyDang\)

Bình luận (0)
MN
Xem chi tiết
NT
1 tháng 3 2022 lúc 21:10

a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)

b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)

c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)

d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

Bình luận (0)
KA
1 tháng 3 2022 lúc 21:10

đề bài là j

Bình luận (0)
NA
Xem chi tiết
VH
5 tháng 11 2017 lúc 22:13

\(\dfrac{1}{3}\)x(\(\dfrac{3}{1+4}\)+\(\dfrac{3}{4+7}\)+........+\(\dfrac{3}{101+103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+.........+\(\dfrac{ }{ }\)\(\dfrac{1}{101}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x\(\dfrac{102}{103}\)

\(\dfrac{34}{103}\)

Bình luận (0)
TD
27 tháng 10 2017 lúc 20:43

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{1}{1}-\dfrac{1}{103}\)

\(=\dfrac{102}{103}\)

Bình luận (1)
VH
18 tháng 12 2017 lúc 13:17

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{103}\right)=\dfrac{1}{3}.\dfrac{102}{103}=\dfrac{102}{309}=\dfrac{34}{103}\)

Bình luận (0)