Cho a,b,c >0 và a+b+c=1.
C/m \(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\)
Cho a, b, c là 3 số không âm thỏa mãn a + b + c = 1. Chứng minh rằng: \(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\)
Đồng bậc : \(BDT\Leftrightarrow9abc+2\left(a+b+c\right)^3\ge7\left(ab+bc+ca\right)\left(a+b+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(c-a\right)^2\ge0\)( đúng)\(\Rightarrow DPcm\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
cho a,b,c>0.CMR
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{b\left(a^2+c^2\right)+a\left(b^2+c^2\right)}\le\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(b^2+c^2\right)}\)
Tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}\) ; \(\dfrac{c+a}{ca+b^2}\le\dfrac{c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}\)
Cộng vế:
\(VT\le\dfrac{1}{a}\left(\dfrac{b^2}{b^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)+\dfrac{1}{b}\left(\dfrac{a^2}{a^2+c^2}+\dfrac{c^2}{a^2+c^2}\right)+\dfrac{1}{c}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{b^2}{a^2+b^2}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a,b,c >0. Chứng minh:
\(a+b+c+\dfrac{9abc}{ab+bc+ca}\ge4\left(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\right)\)
Akai Haruma
Lời giải:
\(a+b+c+\frac{9abc}{ab+bc+ac}\geq 4\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)
\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq 4(ab+bc+ac)\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)
\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq \frac{4a^2b^2}{a+b}+4abc+\frac{4b^2c^2}{b+c}+4abc+\frac{4a^2c^2}{a+c}+4abc\)
\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq \frac{4a^2b^2}{a+b}+\frac{4b^2c^2}{b+c}+\frac{4a^2c^2}{a+c}(*)\)
Áp dụng BĐT AM-GM:
\(4ab\leq (a+b)^2\Rightarrow \frac{4a^2b^2}{a+b}\leq \frac{ab(a+b)^2}{a+b}=ab(a+b)\)
TT: \(\frac{4b^2c^2}{b+c}\leq bc(b+c); \frac{4c^2a^2}{c+a}\leq ac(a+c)\)
Cộng các BĐT trên ta thu được BĐT $(*)$. Tức là $(*)$ luôn đúng, kéo theo BĐT ban đầu luôn đúng
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Cho a,b,c >0 thỏa \(a^2+b^2+c^2=1.CMR:\)
\(P=\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\)
Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Hoàn toàn tương tự với các phân thức còn lại, ta có:
\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$
Cho a + b + c = 1 (a,b,c ≥0)
Cmr: ab + bc + ac ≤ \(\frac{2}{7}+\frac{9abc}{7}\)
\(\Leftrightarrow2+9abc\ge7\left(ab+bc+ca\right)\)(1)
Đặt \(\left\{{}\begin{matrix}abc=r\\ab+bc+ca=q\\a+b+c=p\end{matrix}\right.\)
Ta có:\(r\ge\frac{p\left(4q-p^2\right)}{9}\)(cái này bạn gõ schur trên gg là ra)
\(\Leftrightarrow9r\ge4q-1\)
\(\Rightarrow2+9r\ge2+4q-1=1+4q\)
Lại có:\(3q\le p^2=1\)(bạn tự chứng minh)
\(\Rightarrow1+4q\ge3q+4q=7q\)
\(\Rightarrow2+9r\ge7q\left(đpcm\right)\)
"="\(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cho a, b, c là 3 số không âm thỏa mãn a + b + c = 1. Chứng minh rằng: \(ab+bc+ca\le\frac{2}{7}+\frac{9abc}{7}\)
Cách 1:
BĐT \(\Leftrightarrow7\left(a+b+c\right)\left(ab+bc+ca\right)\le2\left(a+b+c\right)^3+9abc\)
\(VP-VT=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Ta có đpcm. Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Cách 2:
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\) thì 3u = 1. Chú ý \(\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\Rightarrow3u^2\ge3v^2\Rightarrow u^2\ge v^2\)
Cần chứng minh: \(21v^2\le2+9w^3\Leftrightarrow63uv^2\le54u^3+9w^3\)
\(RHS-LHS=9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)
Đúng theo BĐT Schur bậc 3.
P/s: Em không chắc ở cách 2.
tên fairy tail nghe nó sến súa !
cho a, b, c là 3 số không âm thỏa mãn a+b+c=1. Chứng minh rằng \(ab+bc+ca\le\frac{2}{7}+\frac{9abc}{7}\)
Cho a,b,c thuộc [0,1] và ko đồng thời bằng 0.Chứng minh rằng
\(\dfrac{1}{1+b+ca}\)+\(\dfrac{1}{1+c+ab}\)+\(\dfrac{1}{1+a+bc}\)\(\le\)\(\dfrac{3}{a+b+c}\)
Do \(a;b;c\in\left[0;1\right]\Rightarrow\left(1-a\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow ac+1\ge a+c\)
\(\Rightarrow1+b+ac\ge a+b+c\Rightarrow\dfrac{1}{1+b+ac}\le\dfrac{1}{a+b+c}\)
Tương tự: \(\dfrac{1}{1+c+ab}\le\dfrac{1}{a+b+c}\) ; \(\dfrac{1}{1+a+bc}\le\dfrac{1}{a+b+c}\)
Cộng vế với vế:
\(\dfrac{1}{1+b+ca}+\dfrac{1}{1+c+ab}+\dfrac{1}{1+a+bc}\le\dfrac{3}{a+b+c}\) (đpcm)