C/m rằng : 33n+2 + 5 * 23n+1 chia hết cho 10 . Với mọi n >0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh với mọi số tự nhiên n thì 11.52n+33n+2+23n+1 chia hết cho 17.
\(11.5^{2n}+3^{3n+2}+2^{3n+1}\)\(=11.25^n+8^n.4+8^n.2\)\(=11.25^n+6.8^n\)
Vì 25 = 8 (dư 17)
➩ \(11.5^{2n}+3^{3n+2}+2^{3n+1}\)\(=11.25^n+6.8^n\)\(=11.8^n+6.8^n=17.8^n=0\) (dư 17)
Hay \(11.5^{2n}+3^{3n+2}+2^{3n+1}\) ⋮ 17
a) Tìm tất cả các giá trị nguyên của phương trình ${{x}^{4}}+2{{x}^{3}}+2{{x}^{2}}+{{y}^{2}}+2xy=0.$
b) Chứng minh rằng với mọi số nguyên $n$ lẻ thì ${{n}^{3}}+23n+72$ chia hết cho 24.
a/ \(x^4+2x^3+x^2+x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x=0\\x+y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\)
b/ 72 chia hết 24 nên ta chỉ cần chứng minh \(A=n^3+23n⋮24\)
\(A=n^3+23n=n\left(n^2+23\right)=n\left[n^2-1+24\right]\)
\(=n\left[\left(n-1\right)\left(n+1\right)+24\right]=n\left(n-1\right)\left(n+1\right)+24n\)
\(24n\) hiển nhiên chia hết 24. Xét \(B=n\left(n-1\right)\left(n+1\right)\)
B là tích 3 số nguyên liên tiếp \(\Rightarrow B⋮3\)
n lẻ \(\Rightarrow n=2k+1\Rightarrow B=\left(2k+1\right)2k.\left(2k+2\right)\)
\(B=4k\left(k+1\right)\left(2k+1\right)\)
\(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow\) chia hết cho 2 \(\Rightarrow B⋮8\)
Mà 3;8 nguyên tố cùng nhau \(\Rightarrow B⋮24\Rightarrow A⋮24\)
Chứng minh rằng: với mọi n thuộc N
a, (3n+5) x (5n+2) chia hết cho 2
b, 10n + 44 chia hết cho 18 (n # 0)
c, 10n + 35 chia hết cho 45 (n # 0)
- chứng minh rằng: với mọi n thuộc N
a, (3n + 5) x (5n + 2 ) chia hết cho 2
b, 10n + 44 chia hết cho 18 ( n khác 0 )
c, 10n + 35 chia hết cho 45 ( n khác 0 )
7. Chứng minh:
\(a\)) \(x^2-4xy+4y^2+3>0\) với mọi số thực x và y;
\(b\)) \(2x-2x^2-1< 0\) với mọi số thực x.
8. Tìm các giá trị nguyên của n để \(10n^3-23n^2+14n-5\) chia hết cho \(2n-3\)
x2−4xy+4y2+3
=(x−2y)2+3
Do (x−2y)2≥0∀x,y
(x−2y)2+3≥0+3∀x,y
(x−2y)2+3>0∀x,y
=> Đpcm
b)2x−2x2−1
=−x2−x2+2x−1
=−x2−(x−1)2
=−[x2+(x−y)2]<0
=> đpcm
Chúc bn học tốt
8: \(10n^3-23n^2+14n-5⋮2n-3\)
\(\Leftrightarrow10n^3-15n^2-8n^2+12n+2n-3-2⋮2n-3\)
=>\(2n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;1;\dfrac{5}{2};\dfrac{1}{2}\right\}\)
Bài 1. chứng tỏ rằng 175 + 244 - 1321 chia hết cho 10 .
Bài 2 . chứng minh rằng với mọi số tự nhiên n:
a. 74n chi hết cho 5
b. 34n+1 + 2 chia hết cho 5
c. 24+n + 3 chia hết cho 5
d. 24+n + 1 chia hết cho 5
e . 92n+1 + 1 chia hết cho 10
Bài 3 . tìm các số tự nhiên n để n10 + 1 chia hết cho 10
1/ Chứng minh rằng với mọi n thuộc N:
a. 7^(4n)-1 chia hết cho 5
b. 3^(4n+1)+2 chia hết cho 5
c. 9^(2n+1)+1 chia hết cho 10
Chứng minh rằng với mọi n thuộc N
a,24n+2+1 chia hết cho 5
b, 92n +1 chia hết cho 10
c, 74n -1chia hết cho 5
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15