Những câu hỏi liên quan
NH
Xem chi tiết
PH
8 tháng 3 2022 lúc 22:17

=1/9

Bình luận (1)
PH
8 tháng 3 2022 lúc 22:21

`(989898)/(454545)` – `(31313131)/(15151515)`

= `(98.10101)/(45.10101)` – `(31.1010101)/(15.1010101)`

= `(98)/(45)` – `(31)/(15)` = `(1)/(9)`

Bình luận (1)
H24
8 tháng 3 2022 lúc 22:24

Bài toán này rút gọn phân số nhé cậu

=> A = \(\dfrac{98}{45}\)\(\dfrac{31}{15}\)=> A = \(\dfrac{98}{45}\)-\(\dfrac{93}{45}\)=> A = \(\dfrac{5}{45}\)\(\dfrac{1}{9}\)

P/s 989898/454545 mình rút gọn cho 10101

P/s 31313131/15151515 mình rút gọn cho 1010101

Bình luận (0)
HG
Xem chi tiết
NN
Xem chi tiết
HP
19 tháng 3 2021 lúc 19:19

ĐK: \(x\ge0\)

Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)

Khi đó bất phương trình tương đương:

\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)

\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)

Bình luận (1)
TP
Xem chi tiết
NT
18 tháng 4 2021 lúc 9:22

\(\dfrac{x+2}{x-3}< 0\)vì \(x+2>x-3\)

\(\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\)<=> -2 < x < 3 

 

Bình luận (0)
XT
Xem chi tiết
TN
27 tháng 8 2021 lúc 7:59

Các số có 6 chữ số và có tổng các chữ số trong mỗi số đều bằng 53 : 899 999 ; 989 999 ; 998 999 ; 999 989 ; 999 998 ; 999 899

Sắp xếp các số đó theo thứ tự từ bé đến lớn : 899 999 ; 989 999 ; 998 999 ; 999 899 ; 999 989 ; 999 998

Ủng hộ mik nha ^-^

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
23 tháng 1 2024 lúc 21:11

ĐKXĐ: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)

Ta được hệ: 

\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)

\(\Rightarrow a^2+\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-4a^2+3a=0\)

\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)

Bình luận (0)
HM
Xem chi tiết
H24
14 tháng 3 2022 lúc 9:49

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

Bình luận (0)
PT
Xem chi tiết
NT
26 tháng 11 2023 lúc 10:12

Câu 1:

\(\left\{{}\begin{matrix}y-2x< =2\\2y-x>=4\\x+y< =5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y< =2x+2\\2y>=x+4\\y< =-x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y< =2x+2\\y< =-x+5\\y>=\dfrac{1}{2}x+2\end{matrix}\right.\)

y<=2x+2

=>y-2x-2<=0

Vẽ đường thẳng y=2x+2

Khi x=0 và y=0 thì \(y-2x-2=0-0-2=-2< =0\)(đúng)

=>Miền nghiệm của BPT y<=2x+2 là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0)

y<=-x+5

=>x+y-5<=0

Khi x=0 và y=0 thì \(x+y-5=0+0-5< =0\)(đúng)

=>Miền nghiệm của BPT y<=-x+5 là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0)

y>=1/2x+2

=>\(-\dfrac{1}{2}x+y-2>=0\)

Khi x=0 và y=0 thì \(-\dfrac{1}{2}x+y-2=-\dfrac{1}{2}\cdot0+0-2=-2< 0\)

=>O(0;0) không thỏa mãn BPT \(-\dfrac{1}{2}x+y-2>=0\)

=>Miền nghiệm của BPT \(y>=\dfrac{1}{2}x+2\) là nửa mặt phẳng chứa biên nhưng không chứa điểm O(0;0)

Vẽ đồ thị:

loading...

Theo hình vẽ, ta có: Miền nghiệm của hệ BPT sẽ là ΔABC, với A(0;2); B(1;4); C(2;3)

Khi x=0 và y=2 thì F=2-0=2

Khi x=1 và y=4 thì F=4-1=3

Khi x=2 và y=3 thì F=3-2=1

=>Chọn A

Bình luận (0)
MA
Xem chi tiết
NT
9 tháng 3 2022 lúc 19:01

a, Xét tứ giác ADHE có ^ADH = ^AEH = ^DAE = 900

=> tứ giác ADHE là hcn 

=> AH = DE (2 đường chéo bằng nhau) 

b, Xét tam giác AHB và tam giác CHA ta có

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB~ tam giác CHA (g.g)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=BH.CH\)

c, Xét tam giác AHD và tam giác ABH có 

^ADH = ^AHB = 900

^A _ chung 

Vậy tam giác AHD ~ tam giác ABH (g.g)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\Rightarrow AH^2=AD.AB\)(1) 

tương tự tam giác AEH ~ tam giác AHC (g.g)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AH^2=AE.AC\left(2\right)\)

Từ (1) ; (2) suy ra \(AD.AB=AE.AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét tam giác ADE và tam giác ACB 

^A _ chung 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(cmt\right)\)

Vậy tam giác ADE ~ tam giác ACB (c.g.c)

 

Bình luận (0)