rút gọn biểu thức:A=(x-3)(x+3)-(x-1)3-x(1-3x-x2)
rút gọn các biểu thức:
a) (x-2)2-(2x-1)2+(3x-1)(x-5)
b) (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
Rút gọn biểu thức:
a) (x+2)(x-2)-(x-3)(x+1)
b) (x2-5)(x+3)+(x+4)(x-x2)
c)(x-5)(2x+3)-2x(x-3)+x+7
d)(2x+1)2+(3x-1)2+2(2x+1)(3x-1)
\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)
Rút gọn biểu thức:
a) (x + 2)(x – 2) – (x + 1)2
b) (2x – 1)(4x2 + 2x + 1) – (2x + 1)( 4x2 – 2x + 1)
3. Tìm x biết:
a) (x + 2)(x2 – 2x + 4) – x(x2 – 2) = 15
b) (x – 1)3 – x(x2 – 3x – 4) = 13
thanks
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)
Rút gọn biểu thức:
a) M=(x-1)3-3x.(x-1)2+3x2.(x-1)+x3
b) D= (x- y)3-3.(x-y)2x+3.(x-y)x2-x3
Giải chi tiết giúp mình nha.Cảm ơn.
Lời giải:
Áp dụng HĐT: $(a-b)^3=a^3-b^3-3ab(a-b)$ cho cả hai bạn.
a.
$M=x^3-1-3x(x-1)-3x(x-1)^2+3x^2(x-1)+x^3$
$=2x^3-1+3x(x-1)[-1-(x-1)+x]$
$=2x^3-1+3x(x-1).0=2x^3-1$
b.
$D=[(x-y)-x]^3=-y^3$
Rút gọn biểu thức:
a) (2a - 3)(a + 1) + (a2 + 6a + 9) : (a + 3)
b) (3x - 5y)(-xy)2 - 3y2x2 + 4x2y3
c) x(x - 2)2 - (x + 2)(x2 - 2x + 4) + 4x2
a) \(\left(2a-3\right)\left(a+1\right)-\left(a^2+6a+9\right):\left(a+3\right)\)
\(=\left(2a^2+2a-3a-3\right)-\left(a+3\right)^2:\left(a+3\right)\)
\(=2a^2-a-3-\left(a+3\right)\)
\(=2a^2-a-3-a-3\)
\(=2a^2-2a-6\)
b) \(\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\)
\(=\left(3x-5y\right)\cdot x^2y^2-3x^2y^2+4x^2y^3\)
\(=3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\)
\(=3x^3y^2-x^2y^3-3x^2y^2\)
c) \(x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\)
\(=x\left(x^2-4x+4\right)-\left(x^3+8\right)+4x^2\)
\(=x^3-4x^2+4x-x^3-8+4x^2\)
\(=\left(x^3-x^3\right)+\left(-4x^2+4x^2\right)+4x-8\)
\(=4x-8\)
Bài 2: Rút gọn biểu thức:
a/ A = (3x–1)2 + (x+3)(2x–1)
b/ B = x(x–y) + y(x–y)
e/ C = (x–2)(x2+2x+ 4) – x(x2 –2)
f/ D = (x+y)2– (x–y)2
\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)
\(=9x^2-6x+1-2x^2+x-6x+3\)
\(=7x^2-11x+4\)
Bài 1: Rút gọn biểu thức:
A = 2x3 + 3(x -1)(x +1) – 5x(x+1)
B = (5-2x)3 – (3x +5)(5-3x)
C = (3x +1)2 – (2x -1)2
D = (2x+1)3 + (3-x)2– 2(2x+1)(3 - x)
E = (x-2)3 – x(x+1)(x-1) +6x(x-3)
F = (x-1)3 -3(1-x)(x+1) – (x2 +x +1)(x-1) -3x
\(A=2x^3+3x^2-3-5x^2-5x=2x^3-2x^2-5x-3\\ B=125-150x+60x^2-8x^3-25+9x^2=-8x^3+69x^2-150x+100\\ C=\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=5x\left(x+2\right)=5x^2+10x\\ D=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\\ E=x^3-6x^2+12x-8-x^3+x+6x^2-18x=-5x-8\\ F=x^3-3x^2+3x-1-3+3x^2-x^3+1-3x=-3\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
Bài 1: Rút gọn biểu thức:
a) 2x(3x-5)-6x2 b) (x+3)(1-x)+(x-2)(x+2) c) (3x+1)2-(1+3x)(6x-2)+(3x-1)2
Bài 2: Phân tích đa thức thành nhân tử:
a) 9x2-1 b) 2(x-1)+x2-x c) 3x2+14x-5
Bài 3: Tìm x biết:
a) 2x(x-1)-2x2=4 b) x(x-3)-(x+2)(x-1)=5 c) 4x2-25+(2x+5)2=0
Bài 4: Cho tam giác ABC , có D là trung điểm đoạn thẳng BC , E là trung điểm của AB lấy điểm F đối xứng với điểm D qua E .
a) Chứng minh tứ giác FADB là hình bình hành.
b) Kẻ FG vuông với AB ; DH vuông với AB ; (G;HϵAB). Chứng minh FD=AC;\(\widehat{BFH}\)=\(\widehat{ADG}\).
c) Vẽ điểm Q đối xứng với điểm C qua A , DQ cắt đoạn AB tại điểm I , M là trung điểm AD.
Chứng minh F , M , I thẳng hàng
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)