Những câu hỏi liên quan
LD
Xem chi tiết
NL
1 tháng 11 2021 lúc 23:20

a.

Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m

b.

\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m

Bình luận (0)
TL
Xem chi tiết
NL
19 tháng 7 2020 lúc 21:05

- Ta có : \(x^2-\left(m-2\right)x-3=0\)

- Ta thấy : \(ac=1\left(-3\right)=-3< 0\)

=> Nên phương trình có hai nghiệm phân biệt .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-3\end{matrix}\right.\)

- Ta có : \(\sqrt{x^2_1+2020}-x_1=\sqrt{x^2_2+2020}+x_2\)

=> \(\sqrt{x^2_1+2020}-\sqrt{x^2_2+2020}=x_1+x_2\)

=> \(x^2_1+2020+x_2^2+2020-2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}=x^2_1+x^2_2+2x_1x_2\)

=> \(4046=2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}\)

=> \(4092529=\left(x^2_1+2020\right)\left(x^2_2+2020\right)\)

=> \(x^2_1x^2_2+2020x_1^2+2020x^2_2+4080400=4092528\)

=> \(2020x_1^2+2020x^2_2=12120\)

=> \(x^2_1+x^2_2=6\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

=> \(m^2-4m+4-2\left(-3\right)=6\)

=> \(m^2-4m+4=0\)

=> \(m=2\)

Vậy ....

Bình luận (0)
NL
19 tháng 7 2020 lúc 21:06

\(x_1x_2=-3< 0\Rightarrow\)pt đã cho có 2 nghiệm trái dấu

\(\Leftrightarrow\sqrt{x_1^2+2020}-x_2=x_1+\sqrt{x_2^2+2020}\)

\(\Rightarrow x_1^2+2020+x_2^2-2x_2\sqrt{x_1^2+2020}=x_1^2+x_2^2+2020+2x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow-x_2\sqrt{x_1^2+2020}=x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow x_2^2\left(x_1^2+2020\right)=x_1^2\left(x_2^2+2020\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\)

\(\Rightarrow x_1+x_2=0\Rightarrow m-2=0\Rightarrow m=2\)

Có thể thế vào tìm nghiệm và thay vào điều kiện đề bài để thử cho chặt chẽ hơn (do các bước biến đổi ko tương đương)

Bình luận (0)
TT
Xem chi tiết
LH
Xem chi tiết
NL
12 tháng 11 2019 lúc 18:28

Đặt \(\sqrt{x^2+2020}=a>0\Rightarrow a^2-x^2=2020\)

Phương trình trở thành:

\(x^4+a=a^2-x^2\)

\(\Leftrightarrow x^4-a^2+x^2+a=0\)

\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)

\(\Leftrightarrow a=x^2+1\)

\(\Leftrightarrow\sqrt{x^2+2020}=x^2+1\)

\(\Leftrightarrow x^2+2020=x^4+2x^2+1\)

\(\Leftrightarrow x^4+x^2-2019=0\)

Bạn tự giải nốt, đơn giản rồi, chỉ là số quá to

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NL
14 tháng 11 2021 lúc 15:56

ĐKXĐ: \(x\ge0\)

\(x^2+1+\left(2-m\right)x-2\sqrt{x\left(x^2+1\right)}=0\)

Với \(x=0\) ko phải nghiệm, với \(x>0\) chia 2 vế cho x:

\(\Rightarrow\dfrac{x^2+1}{x}+2-m-2\sqrt{\dfrac{x^2+1}{x}}=0\)

Đặt \(\sqrt{\dfrac{x^2+1}{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2-2t+2=m\)

Xét hàm \(f\left(t\right)=t^2-2t+m\) khi \(t\ge\sqrt{2}\)

\(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=1< \sqrt{2}\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge\sqrt{2}\)

\(\Rightarrow f\left(t\right)\ge f\left(\sqrt{2}\right)=4-2\sqrt{2}\)

\(\Rightarrow\) Pt có nghiệm khi \(m\ge4-2\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 2 2024 lúc 20:46

\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)

\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)

\(=5^{2021-\dfrac{1}{2021}}\)

\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)

\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)

Bình luận (0)
H24
Xem chi tiết
AD
4 tháng 5 2019 lúc 20:14

ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa

Bình luận (1)
LD
4 tháng 5 2019 lúc 20:29

Tham khảo tại: Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến

Bình luận (1)
TT
Xem chi tiết
TK
2 tháng 6 2020 lúc 20:48

\(M=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2003=\left(x-y+1\right)^2+\left(y-4\right)^2+2003\ge2003\)

Vậy MAX=2003 đẳng thức xảy ra khi y=4, x=3

Bình luận (0)
H24
Xem chi tiết