Những câu hỏi liên quan
NT
Xem chi tiết
DD
16 tháng 8 2017 lúc 13:37

Câu hỏi của Liên Mỹ - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
H24
6 tháng 10 2019 lúc 18:42

BĐT \(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\)

Ta có: \(VT\le\frac{1+x-1}{2x}+\frac{1+y-1}{2y}=\frac{1}{2}+\frac{1}{2}=1\)(đpcm)

Đẳng thức xảy ra khi x = y = 1

Bình luận (0)
DN
Xem chi tiết
AH
16 tháng 8 2017 lúc 15:06

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(A^2=(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}\sqrt{xy-x}+\sqrt{y}\sqrt{xy-y})^2\)

\(\leq (x+y)(xy-x+xy-y)=(x+y)(2xy-x-y)\)

Áp dụng BĐT AM-GM:

\((x+y)(2xy-x-y)\leq \left (\frac{x+y+2xy-x-y}{2}\right)^2=(xy)^2\)

Do đó, \(A^2\leq (xy)^2\Leftrightarrow A\leq xy\) (đpcm)

Dấu bằng xảy ra khi \(x=y=2\)

Bình luận (0)
NS
Xem chi tiết
NL
16 tháng 7 2020 lúc 11:20

\(x.1.\sqrt{y-1}+y.1.\sqrt{x-1}\le\frac{x}{2}\left(1+y-1\right)+\frac{y}{2}\left(1+x-1\right)=xy\)

Dấu "=" xảy ra khi \(x=y=2\)

Bình luận (0)
AH
16 tháng 7 2020 lúc 11:22

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

$(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}.\sqrt{xy-x}+\sqrt{y}.\sqrt{yx-y})^2$

$\leq (x+y)(xy-x+xy-y)\leq \left(\frac{x+y+xy-x+xy-y}{2}\right)^2=(xy)^2$

$\Rightarrow x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ (đpcm)

Dấu "=" xảy ra khi $x=y=2$

Bình luận (0)
H24
Xem chi tiết
TH
15 tháng 1 2021 lúc 22:08

Bất đẳng thức cần chứng minh tương đương:

\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)

Theo bđt Bunhiakowski:

\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).

Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\)\(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).

Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.

Vậy ta có đpcm.

Bình luận (0)
NL
15 tháng 1 2021 lúc 22:08

\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

Tương tự:

\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)

Cộng vế với vế:

\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
LD
Xem chi tiết
HH
19 tháng 3 2016 lúc 23:11

mk mới học lớp 7 thôi mà

Bình luận (0)
NT
Xem chi tiết
NK
20 tháng 12 2015 lúc 20:48

Áp dụng bất đẳng thức Cô si ta có

\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)

=>\(x\sqrt{y-1}\le\frac{xy}{2}\)

Áp dụng BĐT cô si ta có

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(y\sqrt{x-1}+x\sqrt{y-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)

Dấu ''='' xảy ra <=>x=y=1

Bình luận (0)
DF
Xem chi tiết
TH
14 tháng 1 2021 lúc 9:52

Ta có x + y + z = 1 nên z = 1 - x - y.

Bất đẳng thức cần chứng minh tương đương:

\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)

\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).

Áp dụng bất đẳng thức Cauchy - Schwarz:

\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)

\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)

Cộng vế với vế của (1), (2) ta có đpcm.

 

 

Bình luận (0)
EC
Xem chi tiết
VT
Xem chi tiết