Theo ht vi-ét \(\left|x_1\right|+\left|x_2\right|\)= gì
Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)
\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
Cho PT: \(x^2-x-3m-2\)
a) Tìm m PT có nghiệm kép. Tìm nghiệm kép khi đó.
b) Tính \(\left(x_1+x_2\right)^2-3x_1x_2.\)
c) Tính \(\left(x_1+x_2\right)^2.\)
d) Tính \(\left(x_1\right)^2\left(x_2\right)^2.\)
e) Tính \(\left(x_1\right)^3+\left(x_2\right)^3.\)
a: \(x^2-x-3m-2=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-3m-2\right)\)
\(=1+12m+8=12m+9\)
Để phương trình có nghiệm kép thì Δ=0
=>12m+9=0
=>12m=-9
=>\(m=-\dfrac{3}{4}\)
Thay m=-3/4 vào phương trình, ta được:
\(x^2-x-3\cdot\dfrac{-3}{4}-2=0\)
=>\(x^2-x+\dfrac{1}{4}=0\)
=>\(\left(x-\dfrac{1}{2}\right)^2=0\)
=>\(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-3m-2}{1}=-3m-2\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-3x_1x_2\)
\(=1^2-3\left(-3m-2\right)\)
\(=1+9m+6=9m+7\)
c: \(\left(x_1+x_2\right)^2=1^2=1\)
d: \(\left(x_1\right)^2\cdot\left(x_2\right)^2=\left[x_1x_2\right]^2\)
\(=\left(-3m-2\right)^2\)
\(=9m^2+12m+4\)
Tìm giá trị nhỏ nhất
\(A=\left|x_1^2-x_2^2\right|\\\left|x_1-x_2\right| \left|x_1+x_2\right|\\ 4\left|x_1^{ }-x_2^{ }\right|\)
Mình không hiểu tại sao là \(4\left|x_1^{ }-x_2^{ }\right|\)
Cho hàm số \(f\left( x \right) = x + 1\).
a) So sánh \(f\left( 1 \right)\) và \(f\left( 2 \right)\).
b) Chứng minh rằng nếu \({x_1},{x_2} \in \mathbb{R}\) sao cho \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
cho đa thức P(x) thỏa mãn \(P\left(1\right)=1;P\left(\dfrac{1}{x}\right)=\dfrac{1}{x^2}P\left(x\right),\forall x\ne0;\) \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right),\forall x_1,x_2\in R\). tính \(P\left(\dfrac{5}{7}\right)\)
Cho hàm số \(f\left(x\right)\) có dạng \(f\left(x_1\right)+f\left(x_2\right)=f\left(x_1+x_2\right)\)
chứng minh rằng \(f\left(x_1\right)-f\left(x_2\right)=f\left(x_1-x_2\right)\)
ai làm nhanh nhất mình tick cho nha
giúp mình với
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19\\ \Leftrightarrow\left(5-2m-2x_1-x_2+2m-3\right)\left(5-2m-2x_2-x_1+2m-3\right)=19\)
Giải thích giúp em vì sao ạ :((
Chị cho e hệ thức Vi-ét của bài được hongg ạ?
\(x_1+x_2=2\left(m-1\right)\)( Vi-ét )
\(\rightarrow x_1+x_2=2m-2\)
\(\Leftrightarrow x_1-2m=-2-x_2\)
\(x_1^2-2mx_1=x_1\left(x_1-2m\right)=x_1\left(-2-x_2\right)=-2x_1-x_1x_2=-2x_1-\left(2m-5\right)=5-2m-2x_1\)
_ Phía sau tương tự với `x_2` nha chị uii_
132. Cho hàm số \(y=f\left(x\right)=kx\)( k là hằng số, \(k\ne0\)). Chứng minh rằng:
a) \(f\left(10x\right)=10f\left(x\right)\)
b) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
c) \(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
a, f(10x) = k.(10x) = 10.(kx) = 10.f(x)
b, f(x1 + x2) = k(x1 + x2) = kx1 + kx2 = f(x1) + f(x2)
c, f(x1 - x2) = k(x1 - x2) = kx1 - kx2 = f(x1) - f(x2)
Cho hàm số có tính chất \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)với \(x_1,x_2\inℝ\).Chứng minh rằng hàm số \(y=f\left(x\right)\)có các tính chất sau:
a)\(f\left(0\right)=0\)
b)\(f\left(-x\right)=-f\left(x\right)\)với \(x\inℝ\)
c)\(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)