cho hai đa thức M(x)=-5x3+3x4+7-9x
N(x)=-2x4+3x-5x3-7
tính M(x)=N(x)
Cho hai đa thức P(x)= x4 - 5x3-1-6x2+5x-2x4
Q(x)=3x4+6x2+ 5x3+ 3- 2x4-2x
a) thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b) tính : M(x)=P(x)+Q(x), và tìm nghiệm của đa thức M(x)
P(x) = \(-x^4-5x^3-6x^2+5x-1\)
Q(x) = \(x^4+5x^3+6x^2-2x+3\)
M(x) = P(x) + Q(x)
\(-x^4-5x^3-6x^2+5x-1\)
+
\(x^4+5x^3+6x^2-2x+3\)
------------------------------------
\(3x+2\)
Vậy : M(x) = 3x + 2
Nghiệm của M(x) : 3x + 2 = 0
3x = -2
x = \(-\dfrac{2}{3}\)
a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)
\(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)
\(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)
\(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)
b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)
Vậy \(M\left(x\right)=3x+2\)
Cho \(M\left(x\right)=0\)
hay \(3x+2=0\)
\(3x\) \(=0-2\)
\(3x\) \(=-2\)
\(x\) \(=-2:3\)
\(x\) \(=\dfrac{-2}{3}\)
Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
Cho hai đa thức
M(x) = x4 + 5x3 - x2 + x – 0,5
N(x) = 3x4 - 5x2 – x – 2,5.
Hãy tính M(x) + N(x) và M(x) – N(x).
Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.
+) M(x) + N(x)
= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5
= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)
= 4x4 + 5x3 – 6x2 – 3
Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3
+) M(x) – N(x)
= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5
= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)
= -2x4 + 5x3 + 4x2 + 2x + 2
Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2
Cho hai đa thức
M(x) = x4 + 5x3 - x2 + x – 0,5
N(x) = 3x4 - 5x2 – x – 2,5.
Hãy tính M(x) + N(x) và M(x) – N(x).
Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.
+) M(x) + N(x)
= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5
= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)
= 4x4 + 5x3 – 6x2 – 3
Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3
+) M(x) – N(x)
= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5
= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)
= -2x4 + 5x3 + 4x2 + 2x + 2
Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2
Cho hai đa thức P(x) = 5x3 – 3x + 7 – x;
Q(x) = –5x3 + 2x – 3 + 2x – x2 – 2.
a) Thu gọn hai đa thức P(x), Q(x) và xác định bậc của hai đa thức đó.
b) Tìm đa thức M(x) sao cho P(x) = M(x) – Q(x).
c) Tìm nghiệm của đa thức M(x).
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
c, nghiệm của đa thức là x={√2;−√2}.
Cho đa thức
P ( x ) = 3 x 2 - 3 x - 1 + x 4 Q ( x ) = 5 x 3 + 2 x 4 - x 2 - 5 x 3 - x 4 + 1 + 3 x 2 + 5 x 2
Tìm đa thức R(x) sao cho P ( x ) + R ( x ) = Q ( x )
A. 4 x 2 + 3 x + 2
B. 4 x 2 - 3 x + 2
C. - 4 x 2 + 3 x + 2
D. 4 x 2 + 3 x - 2
Thu gọn Q(x) = x4 + 7x2 + 1
Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A
Bài 1: Cho hai đa thức P(x) = 5x3 – 3x + 7 – x;
Q(x) = –5x3 + 2x – 3 + 2x – x2 – 2.
a) Thu gọn hai đa thức P(x), Q(x) và xác định bậc của hai đa thức đó.
b) Tìm đa thức M(x) sao cho P(x) = M(x) – Q(x).
c) Tìm nghiệm của đa thức M(x).
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
Cho hai đa thức P(x) = 5x3 – 3x + 7 – x và Q(x) = -5x3 + 2x – 3 + 2x – x2– 2
a. Thu gọn,sắp xếp theo lũy thừa giảm dần của biến hai đa thức P(x) và Q(x)
b. Tìm đa thức M(x) = P(x) + Q(x) và N(x) = P(x) – Q(x)
`a,`
`P(x)=5x^3 - 3x+7 -x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
`b,`
`-5x^3+2x-3+2x-x^2-2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
`b,`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
`N(x)=(5x^3-4x+7)-(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7+5x^3+x^2-4x+5`
`= (5x^3+5x^3)+x^2+(-4x-4x)+(7+5)`
`= 10x^3+x^2-8x+12.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
N(x)=5x^3-4x+7+5x^3+x^2-4x+5=10x^3+x^2-8x+12
Bài 1. (2,0 điểm) Cho hai đa thức P(x) = 5x3 – 3x + 7 – x;
Q(x) = –5x3 + 2x – 3 + 2x – x2 – 2.
a) Thu gọn hai đa thức P(x), Q(x) và xác định bậc của hai đa thức đó.
b) Tìm đa thức M(x) sao cho P(x) = M(x) – Q(x).
c) Tìm nghiệm của đa thức M(x).
a: \(P\left(x\right)=5x^3-4x+7\)
Bậc 3
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
Bậc 3
b: M(x)=P(x)+Q(x)
=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
c: M(x)=0
=>2-x^2=0
=>\(x=\pm\sqrt{2}\)
Bài 5: Cho hai đa thức:
P(x) = 2x4 + 9x2 – 3x + 7 – x – 4x2 – 2x4
Q(x) = – 5x3 – 3x – 3 + 7x – x2 – 2
a/ Thu gọn các đa thức trên và sắp xếp các hạng tử theo lũy thừa giảm dần của biến. Tìm bậc của mỗi đa thức trên.
b/ Tính giá trị của các đa thức P(x) tại x = ; Q(x) tại x = 1.
c/ Tính Q(x) + P(x) và Q(x) – P(x)
d/ Tìm giá trị của x sao cho: Q(x) + P(x) + 5x2 – 2 = 0
giúp phần b với d
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)