Những câu hỏi liên quan
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
NL
1 tháng 3 2022 lúc 15:52

Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)

Hàm số liên tục trên R

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m

Bình luận (0)
KT
Xem chi tiết
TH
4 tháng 3 2021 lúc 20:29

x2 - (2m + 3)x + 4m + 2 = 0

Có: \(\Delta\) = [-(2m + 3)]2 - 4.1.(4m + 2) = 4m2 + 12m + 9 - 16m - 8 = 4m2 - 4m + 1 = (2m - 1)2

Vì (2m - 1)2 \(\ge\) 0 với mọi m hay \(\Delta\) \(\ge\) 0

\(\Rightarrow\) Pt luôn có nghiệm với mọi m

Chúc bn học tốt!

Bình luận (1)
NT
4 tháng 3 2021 lúc 20:36

Ta có: \(\Delta=\left(2m+3\right)^2-4\cdot1\cdot\left(4m+2\right)\)

\(\Leftrightarrow\Delta=4m^2+12m+9-4\left(4m+2\right)\)

\(\Leftrightarrow\Delta=4m^2+12m+9-16m-8\)

\(\Leftrightarrow\Delta=4m^2-4m+1\)

\(\Leftrightarrow\Delta=\left(2m-1\right)^2\ge0\forall m\)

Vậy: Phương trình luôn có nghiệm với mọi m

Bình luận (1)
BB
Xem chi tiết
MT
30 tháng 9 2015 lúc 21:12

+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)

\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)

\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)

+x=3

PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)

\(\Leftrightarrow-3m-3+2m+6=0\)

\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)

Bình luận (0)
KS
Xem chi tiết
MT
5 tháng 7 2016 lúc 19:54

+Ta có: \(\Delta=\left(m+1\right)^2-4.\left(2m-3\right)\)

\(=m^2+2m+1-8m+12\)

\(=m^2-6m+12\)

\(=\left(m-3\right)^2+3>0\)

=>dpcm

+Thay x=3 vào phương trình x2 – (m + 1)x + 2m - 3 = 0 

ta được: 32-(m+1).3+2m-3=0

<=>9-3m-3+2m-3=0

<=>-m+3=0

<=>m=3

Vậy m=3 thì phương trình x2 – (m + 1)x + 2m - 3 = 0  có 1 nghiệm bằng 3

Bình luận (0)
HN
5 tháng 7 2016 lúc 20:39

\(x^2-\left(m+1\right)x+2m-3=0\)

+ Xét \(\Delta=\left(m+1\right)^2-4\left(2m-3\right)=m^2-6m+13=\left(m^2-6m+9\right)+4=\left(m-3\right)^2+4>0\)với mọi m thuộc tập số thực.

Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.

+ Phương trình có nghiệm \(x=3\) , thay vào phương trình , ta được : 

\(3^2-\left(m+1\right).3+2m-3=0\Rightarrow m=3\)

Vậy m = 3

Bình luận (0)
BT
Xem chi tiết
NL
8 tháng 3 2023 lúc 21:19

Đề bài không đúng, ví dụ với \(m=-1\) phương trình trở thành \(x^2-2x+5=0\) đây là một phương trình vô nghiệm

Bình luận (0)
TT
Xem chi tiết
NT
27 tháng 9 2020 lúc 16:35

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
H24
5 tháng 8 2021 lúc 14:55

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

Bình luận (0)
PC
5 tháng 8 2021 lúc 15:18

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

Bình luận (0)