Chứng minh rằng phương trình \(x^2\)– 2(m + 4)x + 2m + 6 = 0 luôn có nghiệm với mọi giá trị của m.
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)
Hàm số liên tục trên R
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m
x2 - (2m + 3)x + 4m + 2 = 0
Có: \(\Delta\) = [-(2m + 3)]2 - 4.1.(4m + 2) = 4m2 + 12m + 9 - 16m - 8 = 4m2 - 4m + 1 = (2m - 1)2
Vì (2m - 1)2 \(\ge\) 0 với mọi m hay \(\Delta\) \(\ge\) 0
\(\Rightarrow\) Pt luôn có nghiệm với mọi m
Chúc bn học tốt!
Ta có: \(\Delta=\left(2m+3\right)^2-4\cdot1\cdot\left(4m+2\right)\)
\(\Leftrightarrow\Delta=4m^2+12m+9-4\left(4m+2\right)\)
\(\Leftrightarrow\Delta=4m^2+12m+9-16m-8\)
\(\Leftrightarrow\Delta=4m^2-4m+1\)
\(\Leftrightarrow\Delta=\left(2m-1\right)^2\ge0\forall m\)
Vậy: Phương trình luôn có nghiệm với mọi m
Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)
\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)
+x=3
PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)
\(\Leftrightarrow-3m-3+2m+6=0\)
\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)
Cho phương trình : x2 – (m + 1)x + 2m - 3 = 0
a) + Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
+Ta có: \(\Delta=\left(m+1\right)^2-4.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12\)
\(=m^2-6m+12\)
\(=\left(m-3\right)^2+3>0\)
=>dpcm
+Thay x=3 vào phương trình x2 – (m + 1)x + 2m - 3 = 0
ta được: 32-(m+1).3+2m-3=0
<=>9-3m-3+2m-3=0
<=>-m+3=0
<=>m=3
Vậy m=3 thì phương trình x2 – (m + 1)x + 2m - 3 = 0 có 1 nghiệm bằng 3
\(x^2-\left(m+1\right)x+2m-3=0\)
+ Xét \(\Delta=\left(m+1\right)^2-4\left(2m-3\right)=m^2-6m+13=\left(m^2-6m+9\right)+4=\left(m-3\right)^2+4>0\)với mọi m thuộc tập số thực.
Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
+ Phương trình có nghiệm \(x=3\) , thay vào phương trình , ta được :
\(3^2-\left(m+1\right).3+2m-3=0\Rightarrow m=3\)
Vậy m = 3
Chứng minh phương trình x^2-2(m+2)x+2m^2+3=0 luôn có hai nghiệm phân biệt với mọi giá trị của m
Đề bài không đúng, ví dụ với \(m=-1\) phương trình trở thành \(x^2-2x+5=0\) đây là một phương trình vô nghiệm
Cho phương trình: \(x^2-\left(m+1\right)x+2m-3=0\)
a) Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m
b)Tìm giá trị của m để phương trình (1) có nghiệm bằng 3
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
b) Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.
a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)
\(=m^2+6m+9-4m\)
\(=m^2+2m+9\)
\(=m^2+2m+1+8\)
\(=\left(m+1\right)^2+8\)
Lại có: \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)
Vậy phương trình luôn có 2 nghiêm phân biệt
b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)
Theo bài ra:
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m+3\right)^2-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m-6=0\)
\(\Leftrightarrow m^2+4m+3=0\)
\(\Leftrightarrow m^2+m+3m+3=0\)
\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)
\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức