Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Chứng minh: 1) tam giác AMB = tam giác AMC
Cho tam giác ABC cân tại A,M là trung điểm của BC a: chứng minh tam giác AMB= tam giác AMC b:qua A vẽ a vuông góc AM.Gọi N là giao điểm của 2 đường thẳng A và B. Chứng minh tam giác AMC=tam giác CNA
cho tam giác ABC cân tại A có M là trung điểm của BC
a) chứng minh tam giác AMB= tam giác AMC
b) vẽ đường thăng vuông góc với BC tại C cắt BA tại N. chứng minh tam giác ANC cân
c) gọi H là trung điểm của Nc, I là trung điểm của AC. chứng minh M,I,N thẳng hàng
Cho tam giác ABC cân tại A ( AB > BC).
Gọi M là trung điểm của BC, H là trung điểm của AM.
a. Chứng minh rằng tam giác AMB bằng tam giác AMC. Chứng minh AM ⊥ BC
b.Tính độ dài đoạn AM nếu BC = 6cm; AB = 8cm
c. Đường thẳng qua A song song với BC cắt tia BH và CH lần lượt tại E và F. Chứng minh A là trung
điểm của EF
mk cần hình và lời giải chi tiết nha
các pro giúp mk với
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: BC=6cm nên BM=3cm
Xét ΔABM vuông tại M có \(AB^2=AM^2+MB^2\)
hay \(AM=\sqrt{55}\left(cm\right)\)
Cho tam giác ABC cân tại A.Trên cạnh AB, AC lấy 2 điểm D, E sao cho AD=AE. Gọi M là trung điểm của BC.
a/ chứng minh tam giác ADE cân, DE//BC.
b/ chứng minh tam giác AMB=AMC, AM là trung điểm của BAC.
c/ chứng minh AM vuông góc BC.
d/ chứng minh tam giác NBD=NCE.
e/ chứng minh tam giác AMD=ANC.
a: Xét ΔADE có AD=AE
nên ΔADE cân tại A
Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
b: Xét ΔAMB và ΔAMC có
AM chung
AB=AC
BM=CM
Do đó: ΔABM=ΔACM
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Cho tam giác ABC cân tại A. Gọi M là trung điểm BC. a. Chứng minh tam giác AMB = tam giác AMC. b. Tính góc AMC. c. Kẻ BF vuông góc AC tại F. So sánh góc FBC và góc MAC. d. Trên tia đối của tia BF lấy E sao cho FE =FB. Chứng minh góc BAE = 4. góc FBC. Mọi người giúp mình với, cho mình cảm ơn trước nha!
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: góc FBC+góc C=90 độ
góc MAC+góc C=90 độ
=>góc FBC=góc MAC
Cho tam giác ABC cân tại A (góc A nhọn, AB>BC). Gọi M là trung điểm của BC.
a)Chứng minh: tam giác AMB = tam giác AMC
b)Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng minh: AD = MC
c) CD lần lượt cắt AB, AM tại S và E. Chứng minh: BC<3AS
Cho tam giác ABC vuông tại A có góc B=60*
Gọi M là trung điểm của BC .
a) Chứng minh tam giác AMB đều và tam giác AMC cân
b) Vẽ MI vuông góc với AC tại I. C/M MI=1/2 AB
Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC, N là hình chiếu của M lên AC. Chứng minh tam giác AMC ~ tam giác MNC
+ xét tam giác ABC cân tại A có AM là đường trung tuyến trong tam giác
=> AM đồng thời còn là đường cao trong tam giác ABC (tính chất tam giác cân)
=> góc AMB = 90o
+ xét tam giác AMC và tam giác MNC có:
góc AMB = góc MNC = 90o
góc ACB chung
=> tam giác AMC ~ tam giác MNC (góc - góc)
Xét ∆ ABC cân tại A có : AB = AC => AM là trung tuyến đồng thời là đường cao => AM vuông góc với BC => góc AMC = 90°
Xét ∆ AMC và ∆ MNC có :
Góc AMC = góc MNC (= 90°)
Góc C chung
=> ∆AMC = ∆ MNC ( g - g)
Cho tam giác ABC cân tại A, (góc A <900), gọi M là trung điểm của BC.
a) Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A.
b) Kẻ BH vuông góc AC (H thuộc AC), CK vuông góc AB (K thuộc AB). Chứng minh tam giác CHB = tam giác BKC.
c) Gọi I là giao điểm của BH và CK. Chứng minh A, I, M thẳng hàng.
a) Xét ΔAMB và ΔAMC có
AM chung
BM=CM(M là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(c-c-c)
a) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB và AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Xét ΔCHB vuông tại H và ΔBKC vuông tại K có
BC chung
\(\widehat{HCB}=\widehat{KBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔCHB=ΔBKC(cạnh huyền-góc nhọn)
Cho tam giác ABC vuông tại A .Gọi N là trung điểm của AC. Đường trung trực của AC cắt cạnh BC tại M
a. Chứng minh tam giác AMC cân tại M
b.Chứng minh tam giác MAB cân tại M
a) Xét tam giác NMA và tam giác NMC ta có :
NM : cạnh chung
góc ANM = góc CNM = 90 độ
NA = NC ( GT)
<=> tam giác NMA = tam giác NMC ( c-g-c )
=> MA=MC ( cặp cạnh tương ứng )
=> tam giác AMC cân . ( đpcm )
b) Ta có : N là trung điểm của AC
=> M là trung điểm của BC => MB=MC (1)
mà MA= MC (2)
Từ (1) và (2) => MA =MB => tam giác MAB cân tại M ( đpcm )