Những câu hỏi liên quan
TD
Xem chi tiết
TB
Xem chi tiết
MD
26 tháng 8 2021 lúc 21:14

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)

\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)

\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)

\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)

Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0

mà a+b+c=0 

\(\Rightarrow c=3\)

Thay c=3 vào biểu thức P ta có:

\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)

Vậy P=0

Bình luận (0)
LT
Xem chi tiết
TM
23 tháng 1 2017 lúc 15:12

\(a+b+c=1\Leftrightarrow\left(a+b+c\right)^3=1\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)

\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Mặt khác \(a+b+c=1\Leftrightarrow\hept{\begin{cases}a+b=1-c\\b+c=1-a\\c+a=1-b\end{cases}}\)

\(\Leftrightarrow\left(1-c\right)\left(1-a\right)\left(1-b\right)=0\)

=> Trong 3 số a,b,c ít nhất có 1 số bằng 1 để (1 - c)(1 - a)(1 - b) = 0. Mà a + b + c = 1 => 2 số còn lại có tổng bằng 0

=>\(P=a^{2017}+b^{2017}+c^{2017}=1\) 

Bình luận (0)
HM
23 tháng 1 2017 lúc 12:03

theo mình nghĩ là bằng 1

Bình luận (0)
GN
Xem chi tiết
SG
23 tháng 1 2017 lúc 16:50

a + b + c = a^3 + b^3 + c^3 = 1

<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1

<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3

=> 3(a + b)(b + c)(c + a) = 0

=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0

+ Nếu a + b = 0 => a = -b

Thay a + b = 0 vào đề => c = 1

P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1

Tương tự với 2 trường hợp còn lại ta cũng được P = 1

Bình luận (5)
DK
Xem chi tiết
TH
Xem chi tiết
DH
Xem chi tiết
H24
8 tháng 11 2017 lúc 20:01

cm \(a^3+b^3+c^3=3abc\)

thì \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

(chuyển vế xét hiệu ) 

Bình luận (0)
NT
8 tháng 11 2017 lúc 20:22

TA CÓ: \(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a-b=0;c-a=0;b-c=0\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}+\frac{b^{2017}}{c^{2017}}+\frac{c^{2017}}{a^{2017}}=1+1+1=3\)

Bình luận (0)
NM
Xem chi tiết
ND
18 tháng 12 2017 lúc 19:54

máu biếng tới tận não:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\left[\left(a+b\right)^3+c^2\right]-ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a-b=b-c=c-a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Mà a,b,c >0

=> a = b = c

=> S = 3

\(\)

Bình luận (0)
PT
Xem chi tiết
HN
3 tháng 1 2017 lúc 15:55

\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow a=b=c\) (a,b,c là các số dương)

Bạn thay vào A để tính.

Bình luận (0)