Những câu hỏi liên quan
TA
Xem chi tiết
Xem chi tiết
TL
21 tháng 7 2021 lúc 16:21

a) `4x-2>5x+1`

`<=>-x>3`

`<=>x<-3`

b) Theo BĐT Cauchy:

`a^2+b^2 >= 2ab`

Tương tự:

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`

`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)

Bình luận (0)
NT
21 tháng 7 2021 lúc 16:25

a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)

b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *

Bình luận (0)
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
21 tháng 2 2021 lúc 19:25

Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng

Nếu ko có 2 số nào đồng thời bằng 0:

\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)

\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
NH
21 tháng 2 2021 lúc 20:51

\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc           \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)

áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\)                           \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)

Bình luận (0)
TP
Xem chi tiết
NT
8 tháng 6 2023 lúc 20:39

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bình luận (0)
ND
8 tháng 6 2023 lúc 22:13

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)

=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)

=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]

vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

Bình luận (0)
DP
Xem chi tiết
H24
Xem chi tiết
VV
Xem chi tiết
NT
3 tháng 7 2023 lúc 0:43

a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b)-3bca

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

Bình luận (0)
TA
Xem chi tiết