1. Giải phương trình sau:
a) 2x2+16x-6=4√x(x+8)
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
Giải các phương trình sau:
a, \(16x^2-\left(1+\sqrt{3}\right)^2=0\)
b, \(x-2\sqrt{2x}+2=8\)
a, \(16x^2-\left(1+\sqrt{3}\right)^2=0\\ \Rightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{3}}{4}\\x=\dfrac{-1-\sqrt{3}}{4}\end{matrix}\right.\)
b, \(x-2\sqrt{2x}+2=8\\ \Rightarrow x-\sqrt{8x}-6=0\\ \Rightarrow x-6=\sqrt{8x}\\ \Rightarrow\left(x-6\right)^2=\sqrt{8x}^2\\ \Rightarrow x^2-12x+36=8x\\ \Rightarrow x^2-20x+36=0\\ \Rightarrow\left(x^2-2x\right)-\left(18x-36\right)=0\)
\(\Rightarrow x\left(x-2\right)-18\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-18\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-18=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=18\end{matrix}\right.\)
1: Ta có: \(16x^2-\left(\sqrt{3}+1\right)^2=0\)
\(\Leftrightarrow\left(4x-\sqrt{3}-1\right)\left(4x+\sqrt{3}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}+1}{4}\\x=\dfrac{-\sqrt{3}-1}{4}\end{matrix}\right.\)
2: Ta có: \(x-2\sqrt{2x}+2=8\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=2\sqrt{2}\\\sqrt{x}-2=-2\sqrt{2}\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\sqrt{2}+2\)
\(\Leftrightarrow x=12+8\sqrt{2}\)
a) \(16x^2-\left(1+\sqrt{3}\right)^2=0\Leftrightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\dfrac{1+\sqrt{3}}{4}\)
b) \(x-2\sqrt{2x}+2=8\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{2}=2\sqrt{2}\\\sqrt{x}-\sqrt{2}=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\sqrt{2}\\\sqrt{x}=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=18\)(do \(\sqrt{x}\ge0\ne-\sqrt{2}\))
Bài 1. Giải các phương trình sau:
a) x2 - 6x + 5 = 0 b) 2x2 + 4x – 8 = 0
c) 4y2 – 4y + 1 = 0 d) 5x2 - x + 2 = 0
\(a,x^2-6x+5=0\\ \Rightarrow\left(x^2-5x\right)-\left(x-5\right)=0\\ \Rightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
\(b,2x^2+4x-8=0\\ \Rightarrow x^2+2x-4=0\\ \Rightarrow\left(x^2+2x+1\right)-5=0\\ \Rightarrow\left(x+1\right)^2-\sqrt{5^2}=0\\ \Rightarrow\left(x+1+\sqrt{5}\right)\left(x+1-\sqrt{5}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{5}\\x=-1+\sqrt{5}\end{matrix}\right.\)
\(c,4y^2-4y+1=0\\ \Rightarrow\left(2y-1\right)^2=0\\ \Rightarrow2y-1=0\\ \Rightarrow y=\dfrac{1}{2}\)
\(d,5x^2-x+2=0\)
Ta có:\(\Delta=\left(-1\right)^2-4.5.2=1-40=-39\)
Vì \(\Delta< 0\Rightarrow\) pt vô nghiệm
Giải các phương trình sau:
a, x2 - 9x +20 = 0
b, x2 - 3x - 18 = 0
c, 2x2 - 9 x + 9 = 0
d, 3x2 - 8x + 4 = 0
e, 3x3 - 6x2 - 9x = 0
f, x(x - 5) - 2 + x = 0
g, x3 + 32 + 6x +8 = 0
h, 2x(x - 2) - 2 + x = 0
i, 5x(1 - x) + x - 1 = 0
k, 4 - 9(x - 1)2 = 0
l, (x - 2)2 - 36(x + 3)2 = 0
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
Đề bài yêu cầu gì vậy bạn?
Ta có: \(x\left(3x-4\right)=2x^2+5\)
\(\Leftrightarrow3x^2-4x-2x^2-5=0\)
\(\Leftrightarrow x^2-4x-5=0\)(1)
a=1; b=-4; c=-5
Vì ac=-5<0 nên phương trình (1) có hai nghiệm phân biệt trái dấu
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1\cdot x_2=-5\end{matrix}\right.\)
Ta có: \(A=2\left(x_1-x_2\right)^2+3x_1x_2\)
\(=2\cdot\left(x_1+x_2\right)^2-4\cdot x_1\cdot x_2+3x_1\cdot x_2\)
\(=2\cdot4^2-4\cdot\left(-5\right)+3\cdot\left(-5\right)\)
\(=32+20-15=37\)
\(x(3x-4)=2x^2+5\\\leftrightarrow 3x^2-4x-2x_2-5=0\\\leftrightarrow x^2-4x-5=0\)
Theo Viét
\(\begin{cases}x_1+x_2=4\\x_1x_2=-5\end{cases}\)
\(A=2(x_1-x_2)^2+3x_1x_2\\=2(x_1^2-2x_1x_2+x_2^2)+3x_1x_2\\=2[(x_1+x_2)^2-4x_1x_2]+3x_1x_2\\=2.[4^2-4.(-5)]+3.(-5)\\=2.36-15\\=57\)
Vậy \(A=62\)
giải các phương trình sau:
a, √ 16x - 2√ x + √ 9x = 12
b, √ (4x² - 12x + 9) = 7
b: \(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
\(a,ĐK:x\ge0\\ PT\Leftrightarrow4\sqrt{x}-2\sqrt{x}+3\sqrt{x}=12\\ \Leftrightarrow5\sqrt{x}=12\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\\ \Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\\ b,PT\Leftrightarrow\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=7\\3-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Giải các bất phương trình sau:
a) -2x2 + 7x - 10 < 0
b) \(\dfrac{1+x}{1-x}\) ≤ 2
c) \(\dfrac{x}{x-2}-\dfrac{2}{x-3}\) > 1
d) (x2 + 4x + 10)2 - 7(x2 + 4x + 11) + 7 < 0
Giải phương trình:\(\left(1+x\right)^8+16x^4=\frac{1}{8}\left(1+x^2\right)^4\)
Giúp vs ạ
Bài 1 giải các bất phương trình sau
a.x2 - x - 6 = 0
b.2x2 - 7x + 5 < 0
c.3x2 - 9x + 6 ≥ 0
d.2x2 - 5x + 3 < 0
Bài 2 Giải phương trình sau
A.√x2 + x + 5 = √2x2 - 4x + 1
B.√11x2 -14x - 12 = √3x2 + 4x - 7
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Giải phương trình sau:
a) $\tan ^2x+4\cos ^2x+7=4\tan x+8\cot x$
b) $6\sin ^2x+2\cos ^2x-2\sqrt{3}\sin 2x=14\sin \left(x-\frac{\pi }{6}\right)$