Bài 6: Hệ thức Vi-et và ứng dụng

YM
Cho phương trình x(3x-4)=2x2 +5 có 2 nghiệm x1; x2Không giải phương trình hãy tính giá trị của biểu thức sau:A=2(x1 - x2 )2 +3x1x2
NT
28 tháng 3 2021 lúc 20:04

Đề bài yêu cầu gì vậy bạn?

Bình luận (1)
NT
28 tháng 3 2021 lúc 20:12

Ta có: \(x\left(3x-4\right)=2x^2+5\)

\(\Leftrightarrow3x^2-4x-2x^2-5=0\)

\(\Leftrightarrow x^2-4x-5=0\)(1)

a=1; b=-4; c=-5

Vì ac=-5<0 nên phương trình (1) có hai nghiệm phân biệt trái dấu

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1\cdot x_2=-5\end{matrix}\right.\)

Ta có: \(A=2\left(x_1-x_2\right)^2+3x_1x_2\)

\(=2\cdot\left(x_1+x_2\right)^2-4\cdot x_1\cdot x_2+3x_1\cdot x_2\)

\(=2\cdot4^2-4\cdot\left(-5\right)+3\cdot\left(-5\right)\)

\(=32+20-15=37\)

Bình luận (0)
PD
30 tháng 3 2021 lúc 17:55

\(x(3x-4)=2x^2+5\\\leftrightarrow 3x^2-4x-2x_2-5=0\\\leftrightarrow x^2-4x-5=0\)

Theo Viét

\(\begin{cases}x_1+x_2=4\\x_1x_2=-5\end{cases}\)

\(A=2(x_1-x_2)^2+3x_1x_2\\=2(x_1^2-2x_1x_2+x_2^2)+3x_1x_2\\=2[(x_1+x_2)^2-4x_1x_2]+3x_1x_2\\=2.[4^2-4.(-5)]+3.(-5)\\=2.36-15\\=57\)

Vậy \(A=62\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
TT
Xem chi tiết