rút gọn bt về đẳng thức
x^2-2x+y^2+6y+10
rút gọn về hàng đẳng thức:
a) (2x+1)2+2(2x+1)+1
b) (x-y)2+(x+y)2-2(x+y)(x-y)
a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1\)
\(=\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot1+1^2\)
\(=\left[\left(2x+1\right)+1\right]^2\)
\(=\left(2x+2\right)^2\)
b) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y\right)^2\)
\(=4y^2\)
a,Cho 3y-x=6. Tìm GTNN của bt B=x/y-2+2x-3y?x-6+2x^2+6y
b,Tìm ĐKXĐ và rút gọn biểu thức A=1/a*(a-b)*(a-c)+1/b*(b-a)*(b-c)+1/c*(c-b)*(c-a)
cho biểu thức :
\(P=\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
a) rút gọn P
b) tính giá trị biểu thức biết x,y thỏa mãn đẳng thức:
x2+y2+10=2x-6y
xin lỗi mình mới học lớp 7 thui ko giúp được gì cho bạn rồi
Đk: x, y \(\ne\)0
Ta có: P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\left(\frac{x^3+\left(y^2-x^2\right)\left(x+y\right)-y^3}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2-x^2-2xy-y^2\right)}{xy\left(x^2+xy+y^2\right)}\)
P = \(\frac{2}{x}-\frac{-xy\left(x-y\right)}{xy\left(x^2+xy+y^2\right)}=\frac{2}{x}+\frac{x-y}{x^2+xy+y^2}=\frac{2x^2+2xy+2y^2+x^2-xy}{x\left(x^2+xy+y^2\right)}\)
P = \(\frac{3x^2+xy+2y^2}{x\left(x^2+xy+y^2\right)}\)
b) Ta có: x2 + y2 + 10 = 2x - 6y
<=> x2 - 2x + 1 + y2 + 6y + 9 = 0
<=> (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Do đó: P = \(\frac{3.1^2-3.1+2.\left(-3\right)^2}{1\left(1^2-3+\left(-3\right)^2\right)}=\frac{18}{7}\)
phải là x-y nha ko phải x^3 +.......-y^3
Ai giải giúp mình với(về hằng đẳng thức)
Tìm x và y biết
x^2+2x+y^2-6y-10=0
\(x^2+2x+y^2-6y-10=0\)
\(x^2+2x+1+y^2-6x+9=10\)
\(\left(x+1\right)^2+\left(y-3\right)^2=0\)
\(\left(x+1\right)^2=\left(y-3\right)^2=0\)
\(x+1=y-3=0\)
Vậy \(x=-1;y=3\)
\(x^2\)\(+2x+y^2\)\(-6y-10=0\)
\(x^2\)\(+2x+1+y^2\)\(-6x+9=10\)
\(\left(x+1\right)^2\)+\(\left(y-3\right)^2\)\(=0\)
\(\left(x+1\right)^2\)\(=\left(y-3\right)^2\)\(=0\)
\(x+1=y-3=0\)
Vậy: \(x=-1;y=3\)
Thực hiện phép tính , rút gọn bt
\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
Rút gọn biểu thức
x - 57 - [(49 + x) - ( 57 - x ) ]
\(x-57-\left[\left(49+x\right)-\left(57-x\right)\right]=x-57-\left(49+x-57+x\right)=x-57-\left(2x-8\right)=x-57-2x+8=-x-49\)
Bài 19 Rút gọn
1) (x+2)^2+(3-x)^2
2) (4-x)^2 -(x-3)^2
3) (x-5)(x+5)-(x+5)^2
4) (x-3)^2-(x-4)(x+4)
5) (y^2 -6y+9)-(3-y)^2
6. (2x+3)² –(2x–3).(2x+3)
1) Ta có: \(\left(x+2\right)^2+\left(x-3\right)^2\)
\(=x^2+4x+4+x^2-6x+9\)
\(=2x^2-2x+13\)
2) Ta có: \(\left(4-x\right)^2-\left(x-3\right)^2\)
\(=\left(4-x-x+3\right)\left(4-x+x-3\right)\)
\(=-2x+7\)
3) Ta có: \(\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)
\(=x^2-25-x^2-10x-25\)
=-10x-50
4) Ta có: \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)\)
\(=x^2-6x+9-x^2+16\)
=-6x+25
5) Ta có: \(\left(y^2-6y+9\right)-\left(y-3\right)^2\)
\(=y^2-6y+9-y^2+6y-9\)
=0
6) Ta có: \(\left(2x+3\right)^2-\left(2x-3\right)\left(2x+3\right)\)
\(=4x^2+12x+9-4x^2+9\)
=12x+18
rút gọn bt sau: (2x-3)2-(2x+3)2
`@` `\text {Ans}`
`\downarrow`
`(2x - 3)^2 - (2x + 3)^2`
`= 4x^2 - 12x + 9 - (4x^2 + 12x + 9)`
`= 4x^2 - 12x + 9 - 4x^2 - 12x - 9`
`= (4x^2 - 4x^2) + (-12x - 12x) + (9-9)`
`= -24x`
____
`@` CT:
`(A + B)^2 = A^2 + 2AB + B^2`
`(A - B)^2 = A^2 - 2AB + B^2`
\(\left(2x-3\right)^2-\left(2x+3\right)^2\)
\(=\left[\left(2x-3\right)+\left(2x+3\right)\right]\left[\left(2x-3\right)-\left(2x+3\right)\right]\)
\(=\left(2x-3+2x+3\right)\left(2x-3-2x-3\right)\)
\(=4x\cdot-6\)
\(=-24x\)
Bài 19 rút gọn
1) (x+2)^2+(3-x)^2
2) (4-x)^2-(x-3)^2
3) (x-5)(x+5)-(x+5)^2
4)(x-3)^2-(x-4)(x+4)
5) (y^2-6y+9)-(3-y)^2
6) (2x+3)^2-(2x-3)(2x+3)
1) Ta có: \(\left(x+2\right)^2+\left(x-3\right)^2\)
\(=x^2+4x+4+x^2-6x+9\)
\(=2x^2-2x+13\)
2) Ta có: \(\left(4-x\right)^2-\left(x-3\right)^2\)
\(=\left(4-x-x+3\right)\left(4-x+x-3\right)\)
\(=\left(-2x+7\right)\cdot1\)
\(=-2x+7\)
3) Ta có: \(\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)
\(=x^2-25-x^2-10x-25\)
\(=-10x-50\)