Những câu hỏi liên quan
CD
Xem chi tiết
GD

Bài 1:

\(a,2x^2y\left(2x^2y^2-xy^2\right)\\ =2x^2x^2y^2y-2x^2x.y^2.y=2x^4y^3-2x^3y^3\\ b,\left(x-1\right)\left(2x+3\right)\\ =x.2x+x.3-1.2x-1.3=2x^2+3x-2x-3\\ =2x^2+x-3\\ c,\left(20x^3y^4+10x^2y^3-5xy\right):5xy\\ =20x^3y^4:5xy+10x^2y^3:5xy-5xy:5xy\\ =\left(20:5\right).\left(x^3:x\right).\left(y^4:y\right)+\left(10:5\right).\left(x^2:x\right).\left(y^3:y\right)-\left(5:5\right).\left(x:x\right).\left(y:y\right)\\ =4x^2y^3+2xy^2-1\\ d,\left(y-3x\right)^2-\left(y^2-6xy\right)\\ =\left[y^2-2.y.3x+\left(3x\right)^2\right]-\left(y^2-6xy\right)\\ =y^2-6xy+9x^2-y^2+6xy =9x^2\)

Bình luận (0)
GD

Bài 2:

\(a,4xy+4xz=4x\left(y+z\right)\\ b,x^2-y^2+9-6x\\ =\left(x^2-6x+9\right)-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\left(x-3+y\right)\)

Bài 3:

\(a,\dfrac{3xy}{y+z}+\dfrac{3xz}{y+z}\\=\dfrac{3xy+3xz}{y+z}\\ =\dfrac{3x\left(y+z\right)}{\left(y+z\right)}=3x\left(Với:y\ne-z\right)\\ b,\dfrac{x}{x+2}-\dfrac{x}{x-2}\\ =\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x^2-2x}{\left(x+2\right)\left(x-2\right)}=0\)

Bình luận (0)
NT
4 tháng 11 2023 lúc 20:00

Bài 4:

loading...

 

Bình luận (0)
H24
Xem chi tiết
N2
14 tháng 4 2022 lúc 13:54

\(6x^2y+5xy-4xy\\ =6x^2y+\left[\left(5+4\right)xy\right]\\ =6x^2y+\left(1xy\right)\\=6x^2y+xy\)

Bình luận (2)
N2
14 tháng 4 2022 lúc 14:05

`6x^{2}y+5xy-4xy`

`=6x^{2}y+[(5-4)xy]`

`=6x^{2}y+(1xy)`

`=6x^{2}y+xy`

`@Shả`

Bình luận (0)
PD
Xem chi tiết
NL
4 tháng 1 2024 lúc 11:35

\(2xy+4xy-5xy=6xy-5xy=xy\)

\(x\left(3+2xy\right)=3x+2x^2y\)

Bình luận (0)
NK
Xem chi tiết
AH
29 tháng 5 2023 lúc 17:18

a,

$xy^2+x^2y+(-2xy^2)=xy^2-2xy^2+x^2y=-xy^2+x^2y$

b,

$12x^2y^3z^4+(-7x^2y^3z^4)=12x^2y^3z^4-7x^2y^3z^4=5x^2y^3z^4$

c,

$-6xy^3-(-6xy^3)+6x^3=-6xy^3+6xy^3+6x^3=0+6x^3=6x^3$

d,

$\frac{-x^2}{2}+\frac{7}{2}x^2+x=(\frac{7}{2}-\frac{1}{2})x^2+x$

$=3x^2+x$

e,

$2x^3+3x^3-\frac{1}{3}x^3=(2+3-\frac{1}{3})x^3=\frac{14}{3}x^3$

f,

$5xy^2+\frac{1}{2}xy^2+\frac{1}{4}xy^2=(5+\frac{1}{2}+\frac{1}{4})xy^2$

$=\frac{23}{4}xy^2$

Bình luận (1)
VT
Xem chi tiết
NM
8 tháng 9 2021 lúc 18:01

\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)

Bình luận (0)
TA
Xem chi tiết
NQ
3 tháng 2 2018 lúc 21:55

a, = 3x^2y^2.4x^2y^2 = 12x^4y^4

b, = xy^3.(4+5-6) = 3.xy^3

Tk mk nha

Bình luận (0)
NA
Xem chi tiết
NT
27 tháng 7 2021 lúc 20:30

b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)

c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)

Bình luận (0)
H24
Xem chi tiết
H9
23 tháng 7 2023 lúc 15:48

a) \(x^2y\left(5xy-2x^2y-y^2\right)\)

\(=5x^3y^2-2x^4y^2-x^2y^3\)

b) \(\left(x-2y\right)\left(2x^3+4xy\right)\)

\(=2x^4+4x^2y-4x^3y-8xy^2\)

Bình luận (0)
LN
Xem chi tiết
NT
2 tháng 12 2023 lúc 20:09

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

Bình luận (0)