Dùng đạo hàm tìm giới hạn:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+3}-3\sqrt{x+7}}{x^2-1}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x-1}\)
\(\left(...\right)=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2}{\sqrt{2x+7}+3}=\dfrac{1}{3}\)
Tìm các giới hạn sau:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
a/ L'Hospital:
\(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)
b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)
Dùng đạo hàm tìm giới hạn:
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}\)
sao có GP lại ko có huy hiệu hỏi thôi
Thấy : \(\sqrt{x^2+x+3}-x^2+1=\sqrt{x^2+x+3}-\left(x^2-1\right)=\dfrac{x^2+x+3-\left(x^2-1\right)^2}{\sqrt{x^2+x+3}+x^2-1}\)
\(=\dfrac{x^2+x+3-x^4+2x^2-1}{...}=\dfrac{-x^4+3x^2+x+2}{...}\)
\(=\dfrac{-\left(x-2\right)\left(x^3+2x^2+x+1\right)}{...}\)
\(\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(x^3+2x^2+x+1\right)}{\left(x+2\right)\left[\sqrt{x^2+x+3}+x^2-1\right]}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(2^3+2.2^2+2+1\right)}{4.\left[\sqrt{2^2+2+3}+2^2-1\right]}=-\dfrac{19}{24}\)
Dùng đạo hàm tìm giới hạn:
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{2x+1}{2\sqrt{x^2+x+3}}-2x}{2x}=\dfrac{\dfrac{2.2+1}{2\sqrt{4+2+3}}-4}{4}=-\dfrac{19}{24}\)
Tính giới hạn L = \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x-1}.\sqrt[3]{x+7}-2}{x^2-x}\)
Lời giải:
\(L=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}(\sqrt[3]{x+7}-2)+2(\sqrt{2x-1}-1)}{x(x-1)}=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}.\frac{1}{\sqrt[3]{(x+7)^2}+2\sqrt[3]{x+7}+4}+4.\frac{1}{\sqrt{2x-1}+1}}{x}=\frac{25}{12}\)
Tìm giới hạn:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[4]{x}-1}{x^3+x-2}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
a: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2+2-\sqrt{5-x^2}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x+7-8}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{x+7}+4}+\dfrac{4-5+x^2}{2+\sqrt{5-x^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{x+7}+4}+\dfrac{x^2-1}{2+\sqrt{5-x^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{\left(x+7\right)}+4}+\dfrac{x+1}{2+\sqrt{5-x^2}}\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{x+7}+4}+\dfrac{x+1}{2+\sqrt{5-x^2}}\)
\(=\dfrac{1}{\sqrt[3]{\left(1+7\right)^2}+2\cdot\sqrt[3]{1+7}+4}+\dfrac{1+1}{2+\sqrt{5-1^2}}\)
\(=\dfrac{1}{4+2\cdot2+4}+\dfrac{2}{2+2}\)
\(=\dfrac{1}{12}+\dfrac{1}{2}=\dfrac{7}{12}\)
b: \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)}{\sqrt{x}-\sqrt{5}}\)
\(=\lim\limits_{x\rightarrow5}\sqrt{x}+\sqrt{5}=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)
b, \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)
a: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-2+2-\sqrt[3]{x^2+7}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{5-x-4}{\sqrt{5-x}+2}+\dfrac{8-x^2-7}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1-x}{\sqrt{5-x}+2}+\dfrac{1-x^2}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(1-x\right)\left(\dfrac{1}{\sqrt{5-x}+2}+\dfrac{1+x}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}\right)}{-\left(1-x\right)\left(1+x\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt{5-x}+2}+\dfrac{1+x}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{-\left(1+x\right)}\)
\(=\dfrac{\dfrac{1}{\sqrt{5-1}+2}+\dfrac{1+1}{4+2\cdot\sqrt[3]{1^2+7}+\sqrt[3]{\left(1+7\right)^2}}}{-\left(1+1\right)}\)
\(=\dfrac{\dfrac{1}{2+1}+\dfrac{2}{4+2\cdot2+4}}{-2}\)
\(=\dfrac{\dfrac{1}{3}+\dfrac{1}{6}}{-2}=-\dfrac{1}{4}\)
b: \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x\left(x-4\right)}{x^2+5x-4x-20}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x\left(x-4\right)}{\left(x+5\right)\left(x-4\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x}{x+5}=\dfrac{4}{4+5}=\dfrac{4}{9}\)
Tìm giới hạn bên phải: \(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x}+\sqrt{x-1}-1}{\sqrt{x^2-1}}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x}+\sqrt{x-1}-1}{\sqrt{x^2-1}}\)
\(=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{\left(x-1\right)}{\sqrt{x}+1}+\left(\sqrt{x-1}\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}}\)
\(=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\sqrt{x-1}\right)\left(\dfrac{\sqrt{x-1}}{\sqrt{x}+1}+1\right)}{\sqrt{x-1}\cdot\sqrt{x+1}}\)
\(=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\dfrac{\sqrt{x-1}}{\sqrt{x}+1}+1\right)}{\sqrt{x+1}}=\dfrac{\dfrac{\sqrt{1-1}}{\sqrt{1}+1}+1}{\sqrt{1+1}}\)
\(=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)