Cho A = 1 + 2 + 22 + 23 + ... + 250
Hãy chứng tỏ A + 1 là một luỹ thừa của 2
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
A= 4+22+23+....+220
2A= 8+23+24+...+221
A + 2A -A = (8+2^3+2^4+...+2^21) - (4+2^2+2^3+....+2^20)
A= 2^21+8 - (2^2+4)=2^21
Vậy A là 1 lũy thừa của 2
Chứng minh rằng:
a) A là một luỹ thừa của 2 với A = 4 + 22 + 23 + ... + 220
b) 2B + 3 là một luỹ thừa của B với B = 3 + 32 + 33 + ... + 3100
a: \(A=4+2^2+2^3+...+2^{20}\)
=>\(2A=8+2^3+2^4+...+2^{21}\)
=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)
\(=2^{21}+8-2^2-4=2^{21}\)
=>\(A=2^{21}\) là lũy thừa của 2
b:
\(B=3+3^2+3^3+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(2B=3^{101}-3\)
=>\(2B+3=3^{101}\) là lũy thừa của 3
Cho A = 1 + 2 + 2 2 + 2 3 + . . . + 2 50 . Chứng tỏ rằng: A + 1 là một lũy thừa của 2
Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 2 + 4 + 2 3 + 2 4 + . . . + 2 51 – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 6 + 2 3 + 2 4 + . . . + 2 51 – ( 7 + 2 3 + . . . + 2 50 ) = 2 51 - 1
Suy ra : A + 1 = 2 51
Vậy A+1 là một lũy thừa của 2
Cho A = 1 + 2 + 2 2 + 2 3 + . . . + 2 50 . Chứng tỏ rằng: A + 1 là một lũy thừa của 2.
Cho A=4+22+23+24+...+22002.Chứng minh rằng A là một luỹ thừa của 2
Giúp đi nhanh k cho
Cho A=4+22+23+24+...+22002. Chứng minh rằng A là một luỹ thừa của 2
giúp với nhanh kich cho
vậy nên mình mới hỏi chứ bỏ 23 đi thì mình tự giải cũng đc
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
Lời giải:
$(2300-22):1+1=2279$
Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2.