Những câu hỏi liên quan
TL
Xem chi tiết
HD
Xem chi tiết
HN
10 tháng 6 2016 lúc 16:09

\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)

\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)

\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)

Đặt \(2008\sqrt{1-x}=y\ge0\)

Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)

Từ đó suy ra \(x=\frac{16120229}{16128256}\)

Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.

Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))

Bình luận (0)
KG
Xem chi tiết
LF
28 tháng 5 2017 lúc 21:51

Bài 1:

\(A=\sqrt{3+2x-x^2}=\sqrt{-x^2+2x-1+4}\)

\(=\sqrt{-\left(x^2-2x+1\right)+4}\)

\(=\sqrt{-\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

Đẳng thức xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(A_{Min}=2\) khi \(x=1\)

Bình luận (0)
NH
28 tháng 5 2017 lúc 22:18

1)A=\(\sqrt{3+2x-x^2}\)=\(\sqrt{4-\left(x-1\right)^2}\)\(\ge\sqrt{4}=2\)

vậy MinA=2 tại x-1=0<=> x=1

2)\(\sqrt{x}+\sqrt{y}=\sqrt{2007}\)

<=>\(\sqrt{x}+\sqrt{y}=3\sqrt{223}\)

Mà vế phải là số vô tỉ nên để phương trình có nghiệm nguyên thì \(\sqrt{x},\sqrt{y}\) có dạng a\(\sqrt{223}\)(a\(\in N\))

đặt \(\sqrt{x}=m\sqrt{223}\);\(\sqrt{y}=n\sqrt{223}\)(m,n\(\in N\))

\(\sqrt{x}+\sqrt{y}=3\sqrt{223}\)

<=>m\(\sqrt{223}+n\sqrt{223}\)=\(3\sqrt{223}\)

<=>m+n=3

khi đó ta có các cặp (m;n) sau (0;3);(3;0);(1;2);(2;1)

các giá trị (x;y) theo thứ tự sẽ là (0;2007);(2007;0);(223;892);(892;223)

Bình luận (0)
TL
Xem chi tiết
NL
11 tháng 6 2021 lúc 23:52

Để (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(m+3\right)^2-m-1\ge0\\x_1+x_2=2\left(m+3\right)>0\\x_1x_2=m+1>0\end{matrix}\right.\) \(\Rightarrow m>-1\)

\(P=\left|\dfrac{\sqrt{x_1}-\sqrt{x_2}}{\sqrt{x_1x_2}}\right|>0\Rightarrow P^2=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)^2}{x_1x_2}\)

\(P^2=\dfrac{x_1+x_2-2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{2\left(m+3\right)-2\sqrt{m+1}}{m+1}=\dfrac{4}{m+1}-\dfrac{2}{\sqrt{m+1}}+2\)

\(P^2=\left(\dfrac{2}{\sqrt{m+1}}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\Rightarrow P\ge\dfrac{\sqrt{7}}{2}\)

Dấu "=" xảy ra khi \(\sqrt{m+1}=4\Rightarrow m=15\)

Bình luận (0)
NM
Xem chi tiết
NC
Xem chi tiết
ML
2 tháng 7 2015 lúc 13:35

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

Bình luận (0)
NM
Xem chi tiết
VX
3 tháng 6 2021 lúc 2:05

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Bình luận (3)
DK
3 tháng 6 2021 lúc 8:49

(x,y) hoán vị của (4,9) . có vẻ hoạt động

Bình luận (0)
HD
Xem chi tiết
CN
Xem chi tiết
H24
27 tháng 11 2021 lúc 21:14

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

Bình luận (0)
NM
27 tháng 11 2021 lúc 21:27

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

Bình luận (0)