Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm nghiệm dương của phương trình : (1 + x - căn(x2 -1) )2006 + (1+ x + căn(x2 -1) )2006 = 22007
Tìm nghiệm dương của phương trình:
\(\left(1+x-\sqrt{x^2-1}\right)^{2008}+\left(1+x+\sqrt{x^2-1}\right)^{2008}=2^{2009}\)
tìm nghiệm nguyên dương của phương trình ?
\(\left(1+x+\sqrt{x^2-1}\right)^{2005}+\left(1+x-\sqrt{x^2-1}\right)^{2005}=2^{2006}\)
Tìm nghiệm nguyên dương của phương trình \(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\).
Tính \(y=\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+2}-\sqrt{x+1}}+\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+..+\frac{1}{\sqrt{x+2008}+\sqrt{x+2007}}\)với x=\(\sqrt[2007]{2008}\)
giải phương trình vô tỉ sau
\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2008\)
Tìm nghiệm của phương trình:
\(\sqrt{x+2-2\sqrt{x+1}}+\sqrt{x+10+6\sqrt{x+1}}=2\sqrt{x+2+2\sqrt{x+1}}\)
1. Giải phương trình: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)=1
2. Tìm nghiệm nguyên dương của: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{6xy}=\frac{1}{6}\)
Giải phương trình:
a) \(\frac{\sqrt{x-2005}-1}{x-2005}+\frac{\sqrt{y-2006}-1}{y-2006}+\frac{\sqrt{z-2007}-1}{z-2007}=\frac{3}{7}\)
b) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)