Bài 1:
\(A=\sqrt{3+2x-x^2}=\sqrt{-x^2+2x-1+4}\)
\(=\sqrt{-\left(x^2-2x+1\right)+4}\)
\(=\sqrt{-\left(x-1\right)^2+4}\ge\sqrt{4}=2\)
Đẳng thức xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(A_{Min}=2\) khi \(x=1\)
1)A=\(\sqrt{3+2x-x^2}\)=\(\sqrt{4-\left(x-1\right)^2}\)\(\ge\sqrt{4}=2\)
vậy MinA=2 tại x-1=0<=> x=1
2)\(\sqrt{x}+\sqrt{y}=\sqrt{2007}\)
<=>\(\sqrt{x}+\sqrt{y}=3\sqrt{223}\)
Mà vế phải là số vô tỉ nên để phương trình có nghiệm nguyên thì \(\sqrt{x},\sqrt{y}\) có dạng a\(\sqrt{223}\)(a\(\in N\))
đặt \(\sqrt{x}=m\sqrt{223}\);\(\sqrt{y}=n\sqrt{223}\)(m,n\(\in N\))
\(\sqrt{x}+\sqrt{y}=3\sqrt{223}\)
<=>m\(\sqrt{223}+n\sqrt{223}\)=\(3\sqrt{223}\)
<=>m+n=3
khi đó ta có các cặp (m;n) sau (0;3);(3;0);(1;2);(2;1)
các giá trị (x;y) theo thứ tự sẽ là (0;2007);(2007;0);(223;892);(892;223)