Phân tích đa thức thành nhân tử tiếp đây :v : x^2-y^2-15x+15y
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích các đa thức sau thành nhân tử
a) 15x + 15y
b) 6x - 10y
c) 2a + 4b - 6c
d) 6xy - 12x - 18 y
e) 2(x+y) - 5a(x+y)
f) 6x(x-y) + 5(y-x)
a) 15x + 15y = 15(x + y)
b) 6x - 10y = 2(3x - 5y)
c) 2a + 4b - 6c = 2(a + 2b - 3c)
d) 6xy - 12x - 18y = 6(xy - 2x - 3y)
e) 2(x + y) - 5a(x + y) = (2 - 5a)(x + y)
f) 6x(x - y) + 5(y - x) = 6x(x - y) + (-5)(x - y) = (6x - 5)(x - y)
a) \(15x+15y=15\left(x+y\right)\)
b) \(6x-10y=2\left(3x-5y\right)\)
c) \(2a+4b-6c=2\left(a+2b-3c\right)\)
d) \(6xy-12x-18y=6\left(xy-2x-3y\right)\)
e) \(2\left(x+y\right)-5a\left(x+y\right)=\left(2-5a\right)\left(x+y\right)\)
f) \(6x\left(x-y\right)+5\left(y-x\right)=6x\left(x-y\right)-5\left(x-y\right)=\left(6x-5\right)\left(x-y\right)\)
a, \(15x+15y=15\left(x+y\right)\)
b, \(6x-10y=2\left(3x-5y\right)\)
c, \(2a+4b-6c=2\left(a+2b-3c\right)\)
d, \(6xy-12x-18y=2\left(3xy-6x-9y\right)\)
e, \(2\left(x+y\right)-5a\left(x+y\right)=\left(x+y\right)\left(2-5a\right)\)
f, \(6x\left(x-y\right)+5\left(y-x\right)=6x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(6x-5\right)\)
full nhé ^^
phân tích các đa thức sau thành nhân tử
1, 15x + 15y
2, 8x - 12y
3, xy-x
4, x mũ 2 + x
5, 3x mũ 2 y - 8xy mũ 2
6, 6x - 12xy - 18x mũ 2
Trả lời:
1, 15x + 15y = 15 ( x + y )
2, 8x - 12y = 4 ( 2x - 3y )
3, xy - x = x ( y - 1 )
4, x2 + x = x ( x + 1 )
5, 3x2y - 8xy2 = xy ( 3x - 8y )
6, 6x - 12xy - 18x2 = 6x ( 1 - 2y - 3x )
1) 15x + 15y = 15(x + y)
2) 8x - 12y = 4(2x - 3y)
3) xy - x = x(y - 1)
4) x2 + x = x(x + 1)
5) 3x2y - 8xy2 = xy(3x - 8y)
6) 6x - 12xy - 18x2 = 6x(1 - 2y - 3x)
1.\(15x+15y=15\left(x+y\right)\)
2.\(8x-12y=4\left(2x-3y\right)\)
3.\(xy-x=x\left(y-1\right)\)
4.\(x^2+x=x\left(x+1\right)\)
5.\(3x^{2y}-8xy^2\)hay là \(\left(3x\right)^{2y}-\left(8xy\right)^2\)??
6.\(6x-12xy-18x^2=6x\left(1-2y-3x\right)\)
1.phân tích đa thức sau thành nhân tử : a) 15y+12x: b) x^2-6x+9 c) y^3+2y^2+3y d) x^2+xử+6x+6y
a) \(=3\left(5y+4x\right)\)
b) \(=\left(x-3\right)^2\)
c) \(=y\left(y^2+2y+3\right)\)
phân tích đa thức thành nhân tử: a> 10x+15y; b> x^2-2xy-4+y^2; c> x(x+y)-3x-3y
giúp mình nhaaaaaaa:>
a) 10x + 15y = 5(2x + 3y)
b) x2 - 2xy - 4 + y2
= (x2 - 2xy + y2) - 4
= (x - y)2 - 22
= (x - y + 2)(x - y - 2)
c) x(x + y) - 3x - 3y
= x(x + y) -3(x + y)
= (x - 3)(x + y)
a, \(10x+15y=5\left(2x+3y\right)\)
b, \(x^2-2xy-4+y^2=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
c, \(x\left(x+y\right)-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\)
phân tích đa thức thành nhân tử :2x^2-6xy+5x-15y
BT2: Phân tích các đa thức sau thành nhân tử bằng phương pháp tách hạng tử. a, x^2 + 4xy - 21y^2 b, 5x^2 + 6xy + y^2 c, x^2 + 2xy - 15y^2 d, x^2 - 7xy + 10y^2
a: x^2+4xy-21y^2
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
=5x(x+y)+y(x+y)
=(x+y)(5x+y)
c: \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
=x(x+5y)-3y(x+5y)
=(x+5y)(x-3y)
d: \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
=x(x-2y)-5y(x-2y)
=(x-2y)(x-5y)
a) \(x^2+4xy-21y^2\)
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(5x+y\right)\left(x+y\right)\)
c) \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
\(=x\left(x+5y\right)-3y\left(x+5y\right)\)
\(=\left(x+5y\right)\left(x-3y\right)\)
d) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-5y\right)\left(x-2y\right)\)
a) x² + 4xy - 21y²
= x² - 3xy + 7xy - 21y²
= (x² - 3xy) + (7xy - 21y²)
= x(x - 3y) + 7y(x - 3y)
= (x - 3y)(x + 7y)
b) 5x² + 6xy + y²
= 5x² + 5xy + xy + y²
= (5x² + 5xy) + (xy + y²)
= 5x(x + y) + y(x + y)
= (x + y)(5x + y)
c) x² + 2xy - 15y²
= x² + 2xy + y² - 16y²
= (x² + 2xy + y²) - 16y²
= (x + y)² - (4y)²
= (x + y - 4y)(x + y + 4y)
= (x - 3y)(x + 5y)
d) x² - 7xy + 10y²
= x² - 2xy - 5xy + 10y²
= (x² - 2xy) - (5xy + 10y²)
= x(x - 2y) - 5y(x - 2y)
= (x - 2y)(x - 5y)
bài 3 phân tích đa thức sau thành nhân tử
a 4x2 -16 + (3x +12) (4-2x)
b x3 + X2Y -15x -15y
c 3(x+8) -x2 -8x
d x3 -3x2 + 1 -3x
e 5x2 -5y2 -20x + 20y
kkk =0)
a) \(4x^2-16+\left(3x+12\right)\left(4-2x\right)\)
\(=\left(2x-4\right)\left(2x+4\right)-3\left(x+4\right)\left(2x-4\right)\)
\(=\left(2x-4\right)\left(2x+4-3x-12\right)\)
\(=-\left(2x-4\right)\left(x+8\right)\)
b) \(x^3+x^2y-15x-15y\)
\(=x^2\left(x+y\right)-15\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-15\right)\)
c) \(3\left(x+8\right)-x^2-8x\)
\(=3\left(x+8\right)-x\left(x+8\right)\)
\(=\left(x+8\right)\left(3-x\right)\)
d) \(x^3-3x^2+1-3x\)
\(=x^3+1-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d) \(5x^2-5y^2-20x+20y\)
\(=5\left(x^2-y^2\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y-4\right)\)
phân tích đa thức thành nhân tử : 4(x^2+50+15x)(x^2+18x+72)-3x^2
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
\(=4\left(x+5\right)\left(x+10\right)\left(x+12\right)\left(x+6\right)-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1088x^2-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1085x^2\)
\(=4\left(x+60\right)^2+62x\left(x+60\right)+70x\left(x+60\right)+1085x^2\)
\(=2\left(x+60\right)\left[2\left(x+60\right)+31x\right]+35x\left[2\left(x+60\right)+31x\right]\)
\(=\left(33x+120\right)\left(2x+120+35x\right)\)
\(=3\left(11x+40\right)\left(37x+120\right)\)