Rút gọn:
A = sin2x +sin2\(\left(\dfrac{\pi}{3}-x\right)\) + sinxsin\(\left(\dfrac{\pi}{3}-x\right)\)
a) Rút gọn biểu thức
\(A=\dfrac{\sin4x+2\sin2x}{\sin4x-2\sin2x}.\cot\left(\dfrac{3\pi}{2}-x\right)\) (khi biểu thức có nghĩa)
b) Cho \(\cot\alpha=\dfrac{4}{3},3\pi< \alpha< \dfrac{7\pi}{2}\). Tính \(\cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
cho cosx = \(\dfrac{1}{6}\) và \(\dfrac{3\pi}{2}\) < x < 2\(\pi\) tính
a) sin2x, cos2x, tan2x, cot2x
b) \(sin\left(\dfrac{\pi}{3}-x\right)\)
c) \(cos\left(x-\dfrac{3\pi}{4}\right)\)
d) \(tan\left(\dfrac{\pi}{6}-x\right)\)
a: 3/2pi<x<2pi
=>sin x<0
=>\(sinx=-\sqrt{1-\left(\dfrac{1}{6}\right)^2}=-\dfrac{\sqrt{35}}{6}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{6}\cdot\dfrac{-\sqrt{35}}{6}=\dfrac{-\sqrt{35}}{18}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{1}{36}-1=\dfrac{1}{18}-1=\dfrac{-17}{18}\)
\(tan2x=\dfrac{-\sqrt{35}}{18}:\dfrac{-17}{18}=\dfrac{\sqrt{35}}{17}\)
\(cot2x=1:\dfrac{\sqrt{35}}{17}=\dfrac{17}{\sqrt{35}}\)
b: \(sin\left(\dfrac{pi}{3}-x\right)\)
\(=sin\left(\dfrac{pi}{3}\right)\cdot cosx-cos\left(\dfrac{pi}{3}\right)\cdot sinx\)
\(=\dfrac{1}{2}\cdot\dfrac{-\sqrt{35}}{6}-\dfrac{1}{2}\cdot\dfrac{1}{6}=\dfrac{-\sqrt{35}-1}{12}\)
c: \(cos\left(x-\dfrac{3}{4}pi\right)\)
\(=cosx\cdot cos\left(\dfrac{3}{4}pi\right)+sinx\cdot sin\left(\dfrac{3}{4}pi\right)\)
\(=\dfrac{1}{6}\cdot\dfrac{-\sqrt{2}}{2}+\dfrac{-\sqrt{35}}{6}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{-\sqrt{2}-\sqrt{70}}{12}\)
d: tan(pi/6-x)
\(=\dfrac{tan\left(\dfrac{pi}{6}\right)-tanx}{1+tan\left(\dfrac{pi}{6}\right)\cdot tanx}\)
\(=\dfrac{\dfrac{\sqrt{3}}{3}-\sqrt{35}}{1+\dfrac{\sqrt{3}}{3}\cdot\left(-\sqrt{35}\right)}\)
cho \(sinx\) = \(\dfrac{1}{5}\) và \(\dfrac{\pi}{2}\) < x < \(\pi\) tính
a) sin2x, cos2x, tan2x, cot2x
b) \(sin\left(x-\dfrac{\pi}{6}\right)\)
c) \(cos\left(x-\dfrac{\pi}{3}\right)\)
d) \(tan\left(x-\dfrac{\pi}{4}\right)\)
a: pi/2<x<pi
=>cosx<0
=>\(cosx=-\sqrt{1-\left(\dfrac{1}{5}\right)^2}=-\dfrac{2\sqrt{6}}{5}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{5}\cdot\dfrac{-2\sqrt{6}}{5}=\dfrac{-4\sqrt{6}}{25}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{24}{25}-1=\dfrac{48}{25}-1=\dfrac{23}{25}\)
\(tan2x=-\dfrac{4\sqrt{6}}{25}:\dfrac{23}{25}=-\dfrac{4\sqrt{6}}{23}\)
\(cot2x=1:\dfrac{-4\sqrt{6}}{23}=\dfrac{-23}{4\sqrt{6}}\)
b: \(sin\left(x-\dfrac{pi}{6}\right)=sinx\cdot cos\left(\dfrac{pi}{6}\right)-cosx\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=sinx\cdot\dfrac{\sqrt{3}}{2}-cosx\cdot\dfrac{1}{2}\)
\(=\dfrac{1}{5}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{-2\sqrt{6}}{5}\cdot\dfrac{1}{2}=\dfrac{\sqrt{3}+2\sqrt{6}}{10}\)
c: \(cos\left(x-\dfrac{pi}{3}\right)=cosx\cdot cos\left(\dfrac{pi}{3}\right)+sinx\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=-\dfrac{2\sqrt{6}}{5}\cdot\dfrac{1}{2}+\dfrac{1}{5}\cdot\dfrac{1}{2}=\dfrac{-2\sqrt{6}+1}{10}\)
d: \(tan\left(x-\dfrac{pi}{4}\right)=\dfrac{tanx-tan\left(\dfrac{pi}{4}\right)}{1+tanx\cdot tan\left(\dfrac{pi}{4}\right)}\)
\(=\dfrac{tanx-1}{1+tanx}\)
\(=\dfrac{\dfrac{1}{-2\sqrt{6}}-1}{1+\dfrac{1}{-2\sqrt{6}}}=\dfrac{-25-4\sqrt{6}}{23}\)
cho cosx = \(-\dfrac{1}{4}\) và \(\dfrac{\pi}{2}\) < x < \(\pi\) tính
a) sin2x, cos2x, tan2x, cot2x
b) \(sin\left(x+\dfrac{5\pi}{6}\right)\)
c) \(cos\left(\dfrac{\pi}{6}-x\right)\)
d) \(tan\left(x+\dfrac{\pi}{3}\right)\)
a) Để tính sin2x, cos2x, tan2x và cot2x, chúng ta cần biết giá trị của cosx trước đã. Theo như bạn đã cho, cosx = -1/4. Vậy sinx sẽ bằng căn bậc hai của 1 - cos^2(x) = căn bậc hai của 1 - (-1/4)^2 = căn bậc hai của 1 - 1/16 = căn bậc hai của 15/16 = sqrt(15)/4. Sau đó, chúng ta có thể tính các giá trị khác như sau: sin2x = (2sinx*cosx) = 2 * (sqrt(15)/4) * (-1/4) = -sqrt(15)/8 cos2x = (2cos^2(x) - 1) = 2 * (-1/4)^2 - 1 = 2/16 - 1 = -14/16 = -7/8 tan2x = sin2x/cos2x = (-sqrt(15)/8) / (-7/8) = sqrt(15) / 7 cot2x = 1/tan2x = 7/sqrt(15) b) Để tính sin(x + 5π/6), chúng ta có thể sử dụng công thức sin(a + b) = sin(a)cos(b) + cos(a)sin(b). Với a = x và b = 5π/6, ta có: sin(x + 5π/6) = sin(x)cos(5π/6) + cos(x)sin(5π/6) = sin(x)(-sqrt(3)/2) + cos(x)(1/2) = (-sqrt(3)/2)sin(x) + (1/2)cos(x) c) Để tính cos(π/6 - x), chúng ta sử dụng công thức cos(a - b) = cos(a)cos(b) + sin(a)sin(b). Với a = π/6 và b = x, ta có: cos(π/6 - x) = cos(π/6)cos(x) + sin(π/6)sin(x) = (√3/2)cos(x) + 1/2sin(x) d) Để tính tan(x + π/3), chúng ta có thể sử dụng công thức tan(a + b) = (tan(a) + tan(b))/(1 - tan(a)tan(b)). Với a = x và b = π/3, ta có: tan(x + π/3) = (tan(x) + tan(π/3))/(1 - tan(x)tan(π/3))
a: pi/2<x<pi
=>sin x>0
=>\(sinx=\sqrt{1-\left(-\dfrac{1}{4}\right)^2}=\dfrac{\sqrt{15}}{4}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{\sqrt{15}}{4}\cdot\dfrac{-1}{4}=\dfrac{-\sqrt{15}}{8}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{1}{16}-1=-\dfrac{7}{8}\)
\(tan2x=-\dfrac{\sqrt{15}}{8}:\dfrac{-7}{8}=\dfrac{\sqrt{15}}{7}\)
\(cot2x=1:\dfrac{\sqrt{15}}{7}=\dfrac{7}{\sqrt{15}}\)
b: sin(x+5/6pi)
=sinx*cos(5/6pi)+cosx*sin(5/6pi)
\(=\dfrac{\sqrt{15}}{4}\cdot\dfrac{-\sqrt{3}}{2}+\dfrac{1}{2}\cdot\dfrac{-1}{4}=\dfrac{-\sqrt{45}-1}{8}\)
c: cos(pi/6-x)
=cos(pi/6)*cosx+sin(pi/6)*sinx
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{-1}{4}+\dfrac{1}{2}\cdot\dfrac{\sqrt{15}}{4}=\dfrac{-\sqrt{3}+\sqrt{15}}{8}\)
d: tan(x+pi/3)
\(=\dfrac{tanx+tan\left(\dfrac{pi}{3}\right)}{1-tanx\cdot tan\left(\dfrac{pi}{3}\right)}\)
\(=\dfrac{-\sqrt{15}+\sqrt{3}}{1+\sqrt{15}\cdot\sqrt{3}}=\dfrac{-\sqrt{15}+\sqrt{3}}{1+3\sqrt{5}}\)
Chứng minh các biểu thức sau không phụ thuộc x :
a) \(A=\sin\left(\dfrac{\pi}{4}+x\right)-\cos\left(\dfrac{\pi}{4}-x\right)\)
b) \(B=\cos\left(\dfrac{\pi}{6}-x\right)-\sin\left(\dfrac{\pi}{3}+x\right)\)
c) \(C=\sin^2x+\cos\left(\dfrac{\pi}{3}-x\right).\cos\left(\dfrac{\pi}{3}+x\right)\)
d) \(D=\dfrac{1-\cos2x+\sin2x}{1+\cos2x+\sin2x}.\cot x\)
a) \(A=sin\left(\dfrac{\pi}{4}+x\right)-cos\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-\left(cos\dfrac{\pi}{4}.cosx+sin\dfrac{\pi}{4}.sinx\right)\)
\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\)
\(\Leftrightarrow A=\dfrac{\sqrt{2}}{2}.cosx+\dfrac{\sqrt{2}}{2}.sinx-\dfrac{\sqrt{2}}{2}.cosx-\dfrac{\sqrt{2}}{2}.sinx\)
\(\Leftrightarrow A=0\)
b) \(B=cos\left(\dfrac{\pi}{6}-x\right)-sin\left(\dfrac{\pi}{3}+x\right)\)
\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-\left(sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}.sinx\right)\)
\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-sin\dfrac{\pi}{3}.cosx-cos\dfrac{\pi}{3}.sinx\)
\(\Leftrightarrow B=\dfrac{\sqrt{3}}{2}.cosx+\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx-\dfrac{1}{2}.sinx\)
\(\Leftrightarrow B=0\)
c) \(C=sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)
\(\Leftrightarrow C=sin^2x+\left(cos\dfrac{\pi}{3}.cosx+sin\dfrac{\pi}{3}.sinx\right).\left(cos\dfrac{\pi}{3}.cosx-sin\dfrac{\pi}{3}.sinx\right)\)
\(\Leftrightarrow C=sin^2x+\left(\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right).\left(\dfrac{1}{2}.cosx-\dfrac{\sqrt{3}}{2}.sinx\right)\)
\(\Leftrightarrow C=sin^2x+\dfrac{1}{4}.cos^2x-\dfrac{3}{4}.sin^2x\)
\(\Leftrightarrow C=\dfrac{1}{4}.sin^2x+\dfrac{1}{4}.cos^2x\)
\(\Leftrightarrow C=\dfrac{1}{4}\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow C=\dfrac{1}{4}\)
d) \(D=\dfrac{1-cos2x+sin2x}{1+cos2x+sin2x}.cotx\)
\(\Leftrightarrow D=\dfrac{1-\left(1-2sin^2x\right)+2sinx.cosx}{1+2cos^2a-1+2sinx.cosx}.cotx\)
\(\Leftrightarrow D=\dfrac{2sin^2x+2sinx.cosx}{2cos^2x+2sinx.cosx}.cotx\)
\(\Leftrightarrow D=\dfrac{2sinx\left(sinx+cosx\right)}{2cosx\left(cosx+sinx\right)}.cotx\)
\(\Leftrightarrow D=\dfrac{sinx}{cosx}.cotx\)
\(\Leftrightarrow D=tanx.cotx\)
\(\Leftrightarrow D=1\)
1) sin\(\sin\left[\pi sin2x\right]\)=1
2) cos\(\left[\dfrac{\pi}{2}.cos\left(x-\dfrac{\pi}{4}\right)\right]\)=\(\dfrac{\sqrt{2}}{2}\)
3) sin(x+24*) + sin(x+144*) = cos20*
1.
Chắc đề là \(sin\left[\pi sin2x\right]=1?\)
\(\Leftrightarrow\pi.sin2x=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow sin2x=\dfrac{1}{2}+2k\) (1)
Do \(-1\le sin2x\le1\Rightarrow-1\le\dfrac{1}{2}+2k\le1\)
\(\Rightarrow-\dfrac{3}{4}\le k\le\dfrac{1}{4}\Rightarrow k=0\)
Thế vào (1)
\(\Rightarrow sin2x=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{6}+n2\pi\\2x=\dfrac{5\pi}{6}+m2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+n\pi\\x=\dfrac{5\pi}{12}+m\pi\end{matrix}\right.\)
2.
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{2}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+k2\pi\\\dfrac{\pi}{2}cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\pi}{4}+k_12\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}+4k\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}+4k_1\end{matrix}\right.\) (2)
Do \(-1\le cos\left(x-\dfrac{\pi}{4}\right)\le1\Rightarrow\left\{{}\begin{matrix}-1\le\dfrac{1}{2}+4k\le1\\-1\le-\dfrac{1}{2}+4k_1\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=0\\k_1=0\end{matrix}\right.\)
Thế vào (2):
\(\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\) chắc bạn tự giải tiếp được
3.
\(\Leftrightarrow2sin\left(x+84^0\right).cos\left(60^0\right)=cos20^0\)
\(\Leftrightarrow sin\left(x+84^0\right)=sin70^0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+84^0=70^0+k360^0\\x+84^0=110^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-14^0+k360^0\\x=26^0+k360^0\end{matrix}\right.\)
giải phương trình
a) \(sinx=\dfrac{4}{3}\)
b) \(sin2x=-\dfrac{1}{2}\)
c) \(sin\left(x-\dfrac{\pi}{7}\right)\) = \(sin\dfrac{2\pi}{7}\)
d) \(2sin\left(x+\dfrac{\pi}{4}\right)=-\sqrt{3}\)
`a)sin x =4/3`
`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`
`b)sin 2x=-1/2`
`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`
`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}` `(k in ZZ)`
`c)sin(x - \pi/7)=sin` `[2\pi]/7`
`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`
`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}` `(k in ZZ)`
`d)2sin (x+pi/4)=-\sqrt{3}`
`<=>sin(x+\pi/4)=-\sqrt{3}/2`
`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`
`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}` `(k in ZZ)`
a: sin x=4/3
mà -1<=sinx<=1
nên \(x\in\varnothing\)
b: sin 2x=-1/2
=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi
=>x=-1/12pi+kpi và x=7/12pi+kpi
c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)
=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi
=>x=3/7pi+k2pi và x=pi+k2pi
d: 2*sin(x+pi/4)=-căn 3
=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)
=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi
=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi
Rút gọn biểu thức:
\(sin\left(x\right)+\left[sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{\pi}{5}\right)\right]+\left[sin\left(x+\dfrac{4\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)\right]\)
\(=sin\left(x\right)+2cos\left(x+\dfrac{3\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)+2cos\left(x+\dfrac{7\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)\)
\(=sin\left(x\right)+2sin\left(\dfrac{\pi}{10}\right)\left[cos\left(x+\dfrac{3\pi}{10}\right)+cos\left(x+\dfrac{7\pi}{10}\right)\right]\)
\(=sin\left(x\right)+4sin\left(\dfrac{\pi}{10}\right)cos\left(\dfrac{\pi}{5}\right)cos\left(x+\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)+cos\left(x+\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)+cos\left(x\right)cos\left(\dfrac{\pi}{2}\right)-sin\left(x\right)sin\left(\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)-sin\left(x\right)\)
\(=0\)
cho sinx = \(-\dfrac{3}{5}\) và \(\pi\) < x < \(\dfrac{3\pi}{2}\) tính
a) sin2x, cos2x, tan2x, cot2x
b) \(sin\left(x+\dfrac{\pi}{3}\right)\)
a: pi<x<3/2pi
=>cosx<0
=>\(cosx=-\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)
\(tanx=\dfrac{-3}{5}:\dfrac{-4}{5}=\dfrac{3}{4}\)
cot x=1:3/4=4/3
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{-3}{5}\cdot\dfrac{-4}{5}=\dfrac{24}{25}\)
\(cos2x=1-2\cdot sin^2x=1-2\cdot\left(-\dfrac{3}{5}\right)^2=\dfrac{7}{25}\)
\(tan2x=\dfrac{24}{25}:\dfrac{7}{25}=\dfrac{24}{7}\)
cot 2x=1:24/7=7/24
b: \(sin\left(x+\dfrac{pi}{3}\right)=sinx\cdot cos\left(\dfrac{pi}{3}\right)+sin\left(\dfrac{pi}{3}\right)\cdot cosx\)
\(=\dfrac{-3}{5}\cdot\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{-4}{5}=\dfrac{-3-4\sqrt{3}}{10}\)