x^2+y^2/1+x^2+y^2=x^2/1+x^2=y^2/1+y^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y>0,x+y=1.CM:`A=(x+1/x)^2+(y+1/y)^2>=25/2`
`A=x^2+1/x^2+2+y^2+1/y^2+2`
`=x^2+y^2+1/x^2+1/y^2+4`
`=(x^2+1/(16x^2))+(y^2+1/(16y^2))+4+15/16(1/x^2+1/y^2)`
Áp dụng BĐt cosi và `1/a^2+1/b^2>=8/(a+b)^2`
`=>A>=1/2+1/2+4+15/16(8/(x+y)^2)`
`<=>A>=5+15/2=25/2`
Dấu "=" `<=>x=y=1/2`
Không làm theo cách sau:
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
Gọi T là tổng, H là hiệu của hai đa thức \(3{x^2}y - 2x{y^2} + xy\) và \( - 2{x^2}y + 3x{y^2} + 1\). Khi đó:
A. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\).
B. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\)
C. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} - xy - 1\)
D. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y + 5x{y^2} + xy - 1\)
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
Rút gọn
1 (x-2)^2 + (x+3)^2-2.(x+1).(x-1)
2 ( x-y).(x+y).(x^2 +y^2).(x^4 + y^4)
3 3.(x-y)^2-2(x+y)^2+(x+y).(x-y)
4 (x-1)^2 -2(x-1)(x-3)+(x-3)^2
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
d: \(=9x^2+6x+1-9x^2+6x-1=12x\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
e: \(=x^3+1-x^3+1=2\)
Giải các hệ phương trình sau:
c.{ 2(x - 2) + 3(1 + y) = 2
{ 3(x - 2) - 2(1 + y) = -3
d.{ (x - 5)(y - 2) = (x + 2)(y - 1)
{ (x - 4)(y + 7) = (x - 3)(y + 4)
e.{ 1/x - 1/y = 1
{ 3/x + 4/y = 5
e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\ =\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\ Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\ =>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\ =>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\ \dfrac{y+z+1}{x}=2=>y+z+1=2x\\ \dfrac{z+x-3}{y}=2=>z+x-3=2y\\ \dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\ y=\dfrac{-5}{6}\\ z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!
GIẢI HỆ PHƯƠNG TRÌNH:(đặt ẩn phụ)
a) 1/x -1/y-2 =-1
4/x + 3/y-2 =5
b)2/x +5/(x+y) =2
3/x +1/(x+y) =17/10
c) 2/(x-1) +1 /(y+1) =7
5/(x-1) - 2/(y-1) =4
d) 2/ (căn x-1) -1/ (căn y-1) =1
1/ (căn x-1) +1 / (căn y-1) =2
\(a.\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}-2=-1\\\dfrac{4}{x}+\dfrac{3}{y}-2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a-b-2=-1\\4a+3b-2=5\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{10}{7}\\b=\dfrac{3}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{10}{7}\Rightarrow x=\dfrac{7}{10}\\\dfrac{1}{y}=\dfrac{3}{7}\Rightarrow y=\dfrac{7}{3}\end{matrix}\right.\)
\(b.\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{5}{\left(x+y\right)}=2\\\dfrac{3}{x}+\dfrac{1}{\left(x+y\right)}=\dfrac{17}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a+5b=2\\3a+b=\dfrac{17}{10}\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{x+y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\\\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow y=3\end{matrix}\right.\)
\(c.\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{y+1}=7\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=7\\5a-2b=4\end{matrix}\right.\) (với \(\dfrac{1}{x-1}=a-\dfrac{1}{y+1}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=2\Rightarrow x=\dfrac{3}{2}\\\dfrac{1}{y+1}=3\Rightarrow y=-\dfrac{2}{3}\end{matrix}\right.\)
\(d.\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-1}}=1\\\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{y-1}}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\) (với \(\dfrac{1}{\sqrt{x-1}}=a-\dfrac{1}{\sqrt{y-1}}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}=1\Rightarrow x=2\\\dfrac{1}{\sqrt{y-1}}=1\Rightarrow y=2\end{matrix}\right.\)
*Cộng các phân thức sau: a) x^2/x+1 + 2x/x^2-1 + 1/1+x+1 b) 2x+y/2x^2-y + 8y/y^2-4x^2+2x-y/2x^2+xy c) 1/x-y +3xy/y^3-x^3 + x-y/x^2+xy+y^2